1,668 research outputs found

    Temperatures of dust and gas in S~140

    Get PDF
    In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that the temperatures of the dust & gas may remain decoupled even at higher densities. We study in detail the temperatures of dust & gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. We derive the dust temperature and column density by combining Herschel PACS continuum observations with SOFIA observations at 37 μ\mum and SCUBA at 450 μ\mum. We model these observations using greybody fits and the DUSTY radiative transfer code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. We find that the gas temperature around the infrared sources varies between 35 and 55K and that the gas is systematically warmer than the dust by ~5-15K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35K in the surrounding up to 40-45K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ~10^2 Lo. We conclude that the gas heating in the S 140 region is very efficient even at high densities, most likely due to the deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&

    Energetic radiation and the sulfur chemistry of protostellar envelopes: Submillimeter interferometry of AFGL 2591

    Get PDF
    CONTEXT: The chemistry in the inner few thousand AU of accreting envelopes around young stellar objects is predicted to vary greatly with far-UV and X-ray irradiation by the central star. Aim We search for molecular tracers of high-energy irradiation by the protostar in the hot inner envelope. METHODS: The Submillimeter Array (SMA) has observed the high-mass star forming region AFGL 2591 in lines of CS, SO, HCN, HCN(v2=1), and HC15N with 0.6" resolution at 350 GHz probing radial scales of 600-3500 AU for an assumed distance of 1 kpc. The SMA observations are compared with the predictions of a chemical model fitted to previous single-dish observations. RESULTS: The CS and SO main peaks are extended in space at the FWHM level, as predicted in the model assuming protostellar X-rays. However, the main peak sizes are found smaller than modeled by nearly a factor of 2. On the other hand, the lines of CS, HCN, and HC15N, but not SO and HCN(v2=1), show pedestal emissions at radii of about 3500 AU that are not predicted. All lines except SO show a secondary peak within the approaching outflow cone. A dip or null in the visibilities caused by a sharp decrease in abundance with increasing radius is not observed in CS and only tentatively in SO. CONCLUSIONS: The emission of protostellar X-rays is supported by the good fit of the modeled SO and CS amplitude visibilities including an extended main peak in CS. The broad pedestals can be interpreted by far-UV irradiation in a spherically non-symmetric geometry, possibly comprising outflow walls on scales of 3500 -- 7000 AU. The extended CS and SO main peaks suggest sulfur evaporation near the 100 K temperature radius.Comment: Astronomy and Astrophysics, in pres

    Motor learning principles during rehabilitation after anterior cruciate ligament injury:Time to create an enriched environment to improve clinical outcome

    Get PDF
    Athletes who wish to resume high-level activities after an injury to the anterior cruciate ligament (ACL) are often advised to undergo surgical reconstruction. Nevertheless, ACL reconstruction (ACLR) does not equate to normal function of the knee or a reduced risk of subsequent injuries. A rising concern is the high rate of secondary ACL injuries, particularly in young athletes, with up to 40% of those returning to sport in the first year after surgery experiencing a second ACL rupture. Aside from the increased risk of secondary injury, patients after ACLR have an increased risk of developing early-onset osteoarthritis. Unfortunately, current ACLR rehabilitation programs may not be optimally effective in terms of addressing deficits related to the initial injury and the subsequent surgical intervention. Motor learning to (re)acquire motor skills and neuroplastic capacities are not sufficiently incorporated during traditional rehabilitation, attesting to the high reinjury rates. The purpose of this article is to present novel clinically integrated motor learning principles to support neuroplasticity that can improve patient functional performance and reduce the risk of secondary ACL injury. The novel motor learning principles presented in this manuscript may optimize future rehabilitation programs to reduce the risk of secondary ACL injury and early development of osteoarthritis by targeting changes in neural networks.</p

    Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis

    Full text link
    OBJECTIVE: To analyze the expression, regulation, and biologic relevance of Toll-like receptors (TLRs) 1-10 in synovial and skin fibroblasts and to determine the expression levels of TLRs 2, 3, and 4 in synovial tissues from patients with early rheumatoid arthritis (RA), longstanding RA, and osteoarthritis (OA). METHODS: Expression of TLRs 1-10 in RA synovial fibroblasts (RASFs), OASFs, and skin fibroblasts was analyzed by real-time polymerase chain reaction (PCR). Fibroblasts were stimulated with tumor necrosis factor alpha, interleukin-1beta (IL-1beta), bacterial lipopeptide, poly(I-C), lipopolysaccharide, and flagellin. Production of IL-6 was determined by enzyme-linked immunosorbent assay and induction of TLRs 2-5, matrix metalloproteinases (MMPs) 3 and 13 messenger RNA by real-time PCR. Expression of TLRs 2-4 in synovial tissues was analyzed by immunohistochemistry. RESULTS: Synovial fibroblasts expressed TLRs 1-6, but not TLRs 7-10. Among the expressed TLRs, TLR-3 and TLR-4 were the most abundant in synovial fibroblasts, and stimulation of synovial fibroblasts with the TLR-3 ligand poly(I-C) led to the most pronounced increase in IL-6, MMP-3, and MMP-13. In contrast, skin fibroblasts did not up-regulate MMP-3 or MMP-13 after stimulation with any of the tested stimuli. In synovial tissues from patients with early RA, TLR-3 and TLR-4 were highly expressed and were comparable to the levels of patients with longstanding RA. These expression levels were elevated as compared with those in OA. CONCLUSION: Our findings of high expression of TLRs, particularly TLRs 3 and 4, at an early stage of RA and the reactivity of synovial fibroblasts in vitro to TLR ligands suggest that TLR signaling pathways resulting in persistent inflammation and joint destruction are activated early in the disease process

    Sustained changes in lipid profile and macrophage migration inhibitory factor levels after anti-tumour necrosis factor therapy in rheumatoid arthritis

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) has recently emerged as an important cytokine possibly linking rheumatoid arthritis (RA) and atherogenesis. Because atherogenesis is accelerated in RA this study was conducted to investigate whether anti-tumour necrosis factor (TNF) therapy could lead to sustained downregulation of systemic MIF levels and improvement in lipid profiles. METHODS: Fifty RA patients with active disease (disease activity score in 28 joints (DAS28) >or=3.2), who started adalimumab therapy at 40 mg every other week, were included. At baseline, weeks 16 and 52 serum levels of MIF and lipids were assessed. In addition, the DAS28 and serum C-reactive protein (CRP) levels and erythrocyte sedimentation rate (ESR) were determined. RESULTS: After 16 weeks of adalimumab therapy, both DAS28 and MIF levels were significantly decreased (p<0.001 and p = 0.020, respectively). This was sustained up to week 52 (p<0.001 and p = 0.012, respectively). CRP levels and ESR were significantly reduced after 16 and 52 weeks of adalimumab therapy (p<0.001). High-density lipoprotein cholesterol levels increased at week 16 (p<0.001), but returned to baseline at week 52. Apolipoprotein (apo) A-I levels increased at week 16 (p<0.001) and remained stable (p = 0.005). This resulted in an improved apo B/A-I ratio. CONCLUSIONS: The results underline the sustained downregulation of MIF as a potential new mechanism by which anti-TNF therapy might reduce vascular inflammation, and as such perhaps cardiovascular morbidity in RA patients. This hypothesis is supported by an improved apo B/A-I ratio as well as reduced CRP levels in these patient

    NH_3(1_0-0_0) in the pre-stellar core L1544

    Get PDF
    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH_3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH_3(1_0-0_0) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH_3 . The hyperfine structure of ortho-NH_3(1_0-0_0) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH_3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH_3(1,1). The chemical model overestimates the NH_3 abundance at radii between ~ 4000 and 15000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH_3 observations.Comment: accepted for publication in A&A Letter

    Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    Get PDF
    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (zeta_H) and molecular hydrogen fraction, f(H2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f(H2) in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042+-0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer zeta_H throughout our sample, and find a log-normal distribution with mean log(zeta_H)=-15.75, (zeta_H=1.78x10^-16 s^-1), and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H3+ observations. Ionization rates in the Galactic center tend to be 10--100 times larger than found in the Galactic disk, also in accord with prior studies.Comment: 76 pages, 25 figures, 6 tables; accepted for publication in Ap

    Triply deuterated ammonia in NGC 1333

    Get PDF
    The Caltech Submillimeter Observatory has detected triply deuterated ammonia, ND3, through its 10a-00s transition near 310 GHz. Emission is found in the NGC 1333 region, both towards IRAS 4A and a position to the South-East where DCO+ peaks. In both cases, the hyperfine ratio indicates that the emission is optically thin. Column densities of ND3 are 3--6 x 10^11 cm^-2 for T_ex=10 K and twice as high for T_ex=5 K. Using a Monte Carlo radiative transfer code and a model of the structure of the IRAS source with temperature and density gradients, the estimated ND3 abundance is 3.2 x 10^-12 if ND3/H2 is constant throughout the envelope. In the more likely case that ND3/H2D+ is constant, ND3/H2 peaks in the cold outer parts of the source at a value of 1.0 x 10^-11. To reproduce the observed NH3/ND3 abundance ratio of ~1000, grain surface chemistry requires an atomic D/H ratio of ~0.15 in the gas phase, >10 times higher than in recent chemical models. More likely, the deuteration of NH3 occurs by ion-molecule reactions in the gas phase, in which case the data indicate that deuteron transfer reactions are much faster than proton transfers.Comment: 4 pages, 2 figures; to be published in Astronomy & Astrophysics (Letters

    Water in massive star-forming regions: HIFI observations of W3 IRS5

    Get PDF
    We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22 202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T > 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O 111-000 spectra in our models. We estimate water abundances of 10^{-8} to 10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two protostellar objects contributing to the emission is discussed.Comment: Accepted for publication in the A&A HIFI special issu

    The Different Structures of the Two Classes of Starless Cores

    Full text link
    We describe a model for the thermal and dynamical equilibrium of starless cores that includes the radiative transfer of the gas and dust and simple CO chemistry. The model shows that the structure and behavior of the cores is significantly different depending on whether the central density is either above or below about 10^5 cm-3. This density is significant as the critical density for gas cooling by gas-dust collisions and also as the critical density for dynamical stability, given the typical properties of the starless cores. The starless cores thus divide into two classes that we refer to as thermally super-critical and thermally sub-critical.This two-class distinction allows an improved interpretation of the different observational data of starless cores within a single model.Comment: ApJ in pres
    corecore