64 research outputs found

    On local likelihood asymptotics for Gaussian mixed-effects model with system noise

    Full text link
    The Gaussian mixed-effects model driven by a stationary integrated Ornstein-Uhlenbeck process has been used for analyzing longitudinal data having an explicit and simple serial-correlation structure in each individual. However, the theoretical aspect of its asymptotic inference is yet to be elucidated. We prove the local asymptotics for the associated log-likelihood function, which in particular guarantees the asymptotic optimality of the suitably chosen maximum-likelihood estimator. We illustrate the obtained asymptotic normality result through some simulations for both balanced and unbalanced datasets.Comment: 11 pages, 3 figure

    Search for electron antineutrino appearance in a long-baseline muon antineutrino beam

    Get PDF
    Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions

    Measurement of neutrino and antineutrino neutral-current quasielasticlike interactions on oxygen by detecting nuclear deexcitation γ rays

    Get PDF
    Neutrino- and antineutrino-oxygen neutral-current quasielastic-like interactions are measured at Super-Kamiokande using nuclear de-excitation γ\gamma-rays to identify signal-like interactions in data from a $14.94 \ (16.35)\times 10^{20}protonsontargetexposureoftheT2Kneutrino(antineutrino)beam.Themeasuredfluxaveragedcrosssectionsonoxygennucleiare protons-on-target exposure of the T2K neutrino (antineutrino) beam. The measured flux-averaged cross sections on oxygen nuclei are \langle \sigma_{\nu {\rm -NCQE}} \rangle = 1.70 \pm 0.17 ({\rm stat.}) ^{+ {\rm 0.51}}_{- {\rm 0.38}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}withafluxaveragedenergyof0.82GeVand with a flux-averaged energy of 0.82 GeV and \langle \sigma_{\bar{\nu} {\rm -NCQE}} \rangle = 0.98 \pm 0.16 ({\rm stat.}) ^{+ {\rm 0.26}}_{- {\rm 0.19}} ({\rm syst.}) \times 10^{-38} \ {\rm cm^2/oxygen}$ with a flux-averaged energy of 0.68 GeV, for neutrinos and antineutrinos, respectively. These results are the most precise to date, and the antineutrino result is the first cross section measurement of this channel. They are compared with various theoretical predictions. The impact on evaluation of backgrounds to searches for supernova relic neutrinos at present and future water Cherenkov detectors is also discussed

    Search for neutral-current induced single photon production at the ND280 near detector in T2K

    Get PDF
    Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals
    corecore