46 research outputs found

    Theories of particle dark matter

    Get PDF

    Inelastic Dark Matter at the LHC

    Get PDF
    We perform a model-independent study of inelastic dark matter at the LHC, concentrating on the parameter space with the mass splitting between the excited and ground states of dark matter above a few hundred MeV, where the direct detection experiments are unlikely to explore. The generic signatures of inelastic dark matter at the LHC are displaced pions together with a monojet plus missing energy, and can be tested at the 7 TeV LHC.Comment: 4 pages, 6 figure

    Searches with Mono-Leptons

    Get PDF
    We explore the implications of the mono-lepton plus missing transverse energy signature at the LHC, and point out its significance on understanding how dark matter interacts with quarks, where the signature arises from dark matter pair production together with a leptonically decaying W boson radiated from the initial state quarks. We derive limits using the existing W' searches at the LHC, and find an interesting interference between the contributions from dark matter couplings to up-type and down-type quarks. Mono-leptons can actually furnish the strongest current bound on dark matter interactions for axial vector (spin-dependent) interactions and iso-spin violating couplings. Should a signal of dark matter production be observed, this process can also help disentangle the dark matter couplings to up- and down-type quarks.Comment: four pages; six figures; the LHC 8 TeV results have been updated; final version in PL

    Is the Lightest Kaluza-Klein Particle a Viable Dark Matter Candidate?

    Full text link
    In models with universal extra dimensions (i.e. in which all Standard Model fields, including fermions, propagate into compact extra dimensions) momentum conservation in the extra dimensions leads to the conservation of Kaluza--Klein (KK) number at each vertex. KK number is violated by loop effects because of the orbifold imposed to reproduce the chiral Standard Model with zero modes, however, a KK parity remains at any order in perturbation theory which leads to the existence of a stable lightest KK particle (LKP). In addition, the degeneracy in the KK spectrum is lifted by radiative corrections so that all other KK particles eventually decay into the LKP. We investigate cases where the Standard Model lives in five or six dimensions with compactification radius of TeV1^{-1} size and the LKP is the first massive state in the KK tower of either the photon or the neutrino. We derive the relic density of the LKP under a variety of assumptions about the spectrum of first tier KK modes. We find that both the KK photon and the KK neutrino, with masses at the TeV scale, may have appropriate annihilation cross sections to account for the dark matter, ΩM0.3\Omega_M \sim 0.3.Comment: 31 pages, 12 figures; v2: A couple of references added, a few minor clarifications (on KK parity and on the 6d case

    Top Compositeness at the Tevatron and LHC

    Full text link
    We explore the possibility that the right-handed top quark is composite. We examine the consequences that compositeness would have on ttˉt \bar{t} production at the Tevatron, and derive a weak constraint on the scale of compositeness of order a few hundred GeV from the ttˉt \bar{t} inclusive cross section. More detailed studies of differential properties of ttˉt \bar{t} production could potentially improve this limit. We find that a composite top can result in an enhancement of the ttˉttˉt \bar{t} t \bar{t} production rate at the LHC (of as much as 10310^3 compared to the Standatd Model four top rate). We explore observables which allow us to extract the four top rate from the backgrounds, and show that the LHC can either discover or constrain top compositeness for wide ranges of parameter space.Comment: 9 pages, 4 figure

    Gamma Ray Lines from a Universal Extra Dimension

    Full text link
    Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \gamma \gamma, but we extend these results to include \gamma Z and \gamma H final states. We find that these spectral lines are subdominant compared to the predicted \gamma \gamma signal, but they would be important as follow-up signals in the event of the observation of the \gamma \gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.Comment: 21 pages, 6 figure

    Particle Physics Implications for CoGeNT, DAMA, and Fermi

    Full text link
    Recent results from the CoGeNT collaboration (as well as the annual modulation reported by DAMA/LIBRA) point toward dark matter with a light (5-10 GeV) mass and a relatively large elastic scattering cross section with nucleons (\sigma ~ 10^{-40} cm^2). In order to possess this cross section, the dark matter must communicate with the Standard Model through mediating particles with small masses and/or large couplings. In this Letter, we explore with a model independent approach the particle physics scenarios that could potentially accommodate these signals. We also discuss how such models could produce the gamma rays from the Galactic Center observed in the data of the Fermi Gamma Ray Space Telescope. We find multiple particle physics scenarios in which each of these signals can be accounted for, and in which the dark matter can be produced thermally in the early Universe with an abundance equal to the measured cosmological density.Comment: 4 pages, 2 figure

    A composite axion from a supersymmetric product group

    Full text link
    A global U(1)PQU(1)_\text{PQ} symmetry is protected from gravitational effects in the s-confining SU(N)kSU(N)^k product group theory with A+4Q+NQA+4Q +N\overline{Q} matter. If the SU(4)SU(4) family symmetry is gauged and an appropriate tree-level superpotential is added, then the dynamically generated superpotential spontaneously breaks SU(4)×U(1)PQSU(3)cSU(4)\times U(1)_\text{PQ} \rightarrow SU(3)_c and produces a QCD axion. Small values of the CPCP-violating θ\theta parameter are then possible without any fine-tuning, as long as the product group is suitably large. By introducing a second copy of the s-confining SU(N)SU(N) product group also coupled to the gauged SU(4)SU(4), we find that values as small as N=7N=7 are consistent with θˉ<1010\bar\theta<10^{-10}, even under the pessimistic assumption that the dominant contribution to the axion quality is at tree level.Comment: 16 pages, 3 figures, 4 tables, 2 appendice

    Running into New Territory in SUSY Parameter Space

    Full text link
    The LEP-II bound on the light Higgs mass rules out the vast majority of parameter space left to the Minimal Supersymmetric Standard Model (MSSM) with weak-scale soft-masses. This suggests the importance of exploring extensions of the MSSM with non-minimal Higgs physics. In this article, we explore a theory with an additional singlet superfield and an extended gauge sector. The theory has a number of novel features compared to both the MSSM and Next-to-MSSM, including easily realizing a light CP-even Higgs mass consistent with LEP-II limits, tan(beta) < 1, and a lightest Higgs which is charged. These features are achieved while remaining consistent with perturbative unification and without large stop-masses. Discovery modes at the Tevatron and LHC are discussed.Comment: 15 pages, 5 figures; Typo in equation (4.5) corrected; submitted to JHE

    Manifestations of Top Compositeness at Colliders

    Full text link
    We explore the possibility that the right-handed top quark is composite, identifying possible signatures of compositeness and how they might manifest themselves at the LHC and Tevatron. We perform a complete analysis of the dimension six modifications of the top coupling to gluons and find that cancellations among operators in the t\bar{t} rate allow for very low compositeness scales, but this can be drastically improved by looking at kinematic distributions. Turning to the LHC, we examine four top production from a dimension six four-top operator and estimate the LHC with 100 {\rm fb}^{-1} collected luminosity to be sensitive to compositeness scales as high as 5 TeV.Comment: 8 pages, 6 figures, updated figure 6, updated references, final version published in JHE
    corecore