216 research outputs found

    The impact of extracerebral organ failure on outcome of patients after cardiac arrest : An observational study from the ICON database

    Get PDF
    Publisher Copyright: © 2016 The Author(s).Background: We used data from a large international database to assess the incidence and impact of extracerebral organ dysfunction on prognosis of patients admitted after cardiac arrest (CA). Methods: This was a sub-analysis of the Intensive Care Over Nations (ICON) database, which contains data from all adult patients admitted to one of 730 participating intensive care units (ICUs) in 84 countries from 8-18 May 2012, except admissions for routine postoperative surveillance. For this analysis, patients admitted after CA (defined as those with "post-anoxic coma" or "cardiac arrest" as the reason for ICU admission) were included. Data were collected daily in the ICU for a maximum of 28 days; patients were followed up for outcome data until death, hospital discharge, or a maximum of 60 days in-hospital. Favorable neurological outcome was defined as alive at hospital discharge with a last available neurological Sequential Organ Failure Assessment (SOFA) subscore of 0-2. Results: Among the 469 patients admitted after CA, 250 (53 %) had had out-of-hospital CA; 210 (45 %) patients died in the ICU and 357 (76 %) had an unfavorable neurological outcome. Non-survivors had a higher incidence of renal (43 vs. 16 %), cardiovascular (56 vs. 45 %), and respiratory (62 vs. 48 %) failure on admission and during the ICU stay than survivors (all p < 0.05). Similar results were found for patients with unfavorable vs. favorable neurological outcomes. In multivariable analysis, independent predictors of ICU mortality were renal failure on admission, high admission Simplified Acute Physiology Score (SAPS) II, high maximum serum lactate levels within the first 24 h after ICU admission, and development of sepsis. Independent predictors of unfavorable neurological outcome were mechanical ventilation on admission, high admission SAPS II score, and neurological dysfunction on admission. Conclusions: In this multicenter cohort, extracerebral organ dysfunction was common in CA patients. Renal failure on admission was the only extracerebral organ dysfunction independently associated with higher ICU mortality.publishersversionPeer reviewe

    Effects of changes in arterial pressure on organ perfusion during septic shock

    Get PDF
    Septic shock is characterized by altered tissue perfusion associated with persistent arterial hypotension. Vasopressor therapy is generally required to restore organ perfusion but the optimal mean arterial pressure (MAP) that should be targeted is uncertain. The aim of this study was to assess the effects of increasing MAP using norepinephrine (NE) on hemodynamic and metabolic variables and on microvascular reactivity in patients with septic shock.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Dangers of hyperoxia

    Get PDF
    Oxygen (O-2) toxicity remains a concern, particularly to the lung. This is mainly related to excessive production of reactive oxygen species (ROS). Supplemental O-2, i.e. inspiratory O-2 concentrations (FIO2) > 0.21 may cause hyperoxaemia (i.e. arterial (a) PO2 > 100 mmHg) and, subsequently, hyperoxia (increased tissue O-2 concentration), thereby enhancing ROS formation. Here, we review the pathophysiology of O-2 toxicity and the potential harms of supplemental O-2 in various ICU conditions. The current evidence base suggests that PaO2 > 300 mmHg (40 kPa) should be avoided, but it remains uncertain whether there is an "optimal level" which may vary for given clinical conditions. Since even moderately supra-physiological PaO2 may be associated with deleterious side effects, it seems advisable at present to titrate O-2 to maintain PaO2 within the normal range, avoiding both hypoxaemia and excess hyperoxaemia.Peer reviewe

    Clinical characteristics, risk factors and outcomes in patients with severe COVID-19 registered in the International Severe Acute Respiratory and Emerging Infection Consortium WHO clinical characterisation protocol: a prospective, multinational, multicentre, observational study

    Get PDF
    Respiratory infections and tuberculosisInfecciones respiratorias y tuberculosisInfeccions respiratòries i tuberculosiDue to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55–78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5–19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6–23) days versus 8 (4–15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65–0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.This work was supported by the UK Foreign, Commonwealth and Development Office and Wellcome (215091/Z/18/Z), the Bill and Melinda Gates Foundation (OPP1209135), Canadian Institutes of Health Research Coronavirus Rapid Research Funding Opportunity OV2170359, grants from Rapid European COVID-19 Emergency Response Research (Horizon 2020 project 101003589), the European Clinical Research Alliance on Infectious Diseases (965313), The Imperial National Institute for Health Research (NIHR) Biomedical Research Centre, and The Cambridge NIHR Biomedical Research Centre; and endorsed by the Irish Critical Care Clinical Trials Group, co-ordinated in Ireland by the Irish Critical Care Clinical Trials Network at University College Dublin and funded by the Health Research Board of Ireland (CTN-2014-12). Data and Material provision was supported by grants from: the NIHR (award CO-CIN-01), the Medical Research Council (grant MC_PC_19059), the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE) (award 200907), Wellcome Trust (Turtle, Lance-fellowship 205228/Z/16/Z), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Liverpool Experimental Cancer Medicine Centre (grant C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (award IS-BRC-1215-20013), and NIHR Clinical Research Network providing infrastructure support. This work was by Research Council of Norway grant number 312780, and a philanthropic donation from Vivaldi Invest A/S owned by Jon Stephenson von Tetzchner

    Evaluation of total body weight and body mass index cut-offs for increased cefazolin dose for surgical prophylaxis

    Get PDF
    AbstractFrench and American guidelines recommend increased dosage regimens of cefazolin (CFZ) for surgical prophylaxis in patients with a body mass index (BMI) ≥ 35 kg/m2 or with a total body weight (TBW) ≥ 120 kg. The objective of this study was to evaluate the accuracy of these cut-offs in identifying patients who require CFZ dose adjustment. A pharmacokinetic study was conducted in patients of varying TBW and BMI who received 2 g of CFZ intravenously for prophylaxis prior to digestive surgery. Adequacy of therapy, defined as a serum concentration of unbound CFZ (fCFZ) ≥ 4 mg/L, was evaluated 180 min (T180) and 240 min (T240) after the start of CFZ infusion. Possible factors associated with insufficient fCFZ levels were also assessed. A P-value of <0.05 was considered statistically significant. A total of 63 patients were included in the study, categorised according to BMI (<35 kg/m2, 20 patients; and ≥35 kg/m2, 43 patients) and TBW (<120 kg, 41 patients; and ≥120 kg, 22 patients). All patients had adequate drug levels at T180 but only 40/63 patients (63%) had adequate levels at T240. At T240, therapy was adequate in 15/20 patients (75%) and 25/43 patients (58%) with BMI <35 kg/m2 and ≥35 kg/m2, respectively (P = 0.20), and in 28/41 patients (68%) and 12/22 patients (55%) with TBW <120 kg and ≥120 kg, respectively (P = 0.28). No factor associated with insufficient fCFZ was identified. In conclusion, current BMI and TBW cut-offs are poor indicators of which patients could benefit from increased CFZ dosage regimens

    Advances in antibiotic therapy in the critically ill

    Get PDF
    Infections occur frequently in critically ill patients and their management can be challenging for various reasons, including delayed diagnosis, difficulties identifying causative microorganisms, and the high prevalence of antibiotic-resistant strains. In this review, we briefly discuss the importance of early infection diagnosis, before considering in more detail some of the key issues related to antibiotic management in these patients, including controversies surrounding use of combination or monotherapy, duration of therapy, and de-escalation. Antibiotic pharmacodynamics and pharmacokinetics, notably volumes of distribution and clearance, can be altered by critical illness and can influence dosing regimens. Dosing decisions in different subgroups of patients, e.g., the obese, are also covered. We also briefly consider ventilator-associated pneumonia and the role of inhaled antibiotics. Finally, we mention antibiotics that are currently being developed and show promise for the future

    Extracorporeal Membrane Oxygenation in Patients With COVID-19:An International Multicenter Cohort Study

    Get PDF
    BACKGROUND: To report and compare the characteristics and outcomes of COVID-19 patients on extracorporeal membrane oxygenation (ECMO) to non-COVID-19 acute respiratory distress syndrome (ARDS) patients on ECMO. METHODS: We performed an international retrospective study of COVID-19 patients on ECMO from 13 intensive care units from March 1 to April 30, 2020. Demographic data, ECMO characteristics and clinical outcomes were collected. The primary outcome was to assess the complication rate and 28-day mortality; the secondary outcome was to compare patient and ECMO characteristics between COVID-19 patients on ECMO and non-COVID-19 related ARDS patients on ECMO (non-COVID-19; January 1, 2018 until July 31, 2019). RESULTS: During the study period 71 COVID-19 patients received ECMO, mostly veno-venous, for a median duration of 13 days (IQR 7-20). ECMO was initiated at 5 days (IQR 3-10) following invasive mechanical ventilation. Median PaO(2)/FiO(2) ratio prior to initiation of ECMO was similar in COVID-19 patients (58 mmHg [IQR 46-76]) and non-COVID-19 patients (53 mmHg [IQR 44-66]), the latter consisting of 48 patients. 28-day mortality was 37% in COVID-19 patients and 27% in non-COVID-19 patients. However, Kaplan-Meier curves showed that after a 100-day follow-up this non-significant difference resolves. Non-surviving COVID-19 patients were more acidotic prior to initiation ECMO, had a shorter ECMO run and fewer received muscle paralysis compared to survivors. CONCLUSIONS: No significant differences in outcomes were found between COVID-19 patients on ECMO and non-COVID-19 ARDS patients on ECMO. This suggests that ECMO could be considered as a supportive therapy in case of refractory respiratory failure in COVID-19

    ERC-ESICM guidelines on temperature control after cardiac arrest in adults

    Get PDF
    The aim of these guidelines is to provide evidence based guidance for temperature control in adults who are comatose after resuscitation from either in-hospital or out-of-hospital cardiac arrest, regardless of the underlying cardiac rhythm. These guidelines replace the recommendations on temperature management after cardiac arrest included in the 2021 post-resuscitation care guidelines co-issued by the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM). The guideline panel included thirteen international clinical experts who authored the 2021 ERC-ESICM guidelines and two methodologists who participated in the evidence review completed on behalf of the International Liaison Committee on Resuscitation (ILCOR) of whom ERC is a member society. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations. The panel provided suggestions on guideline implementation and identified priorities for future research. The certainty of evidence ranged from moderate to low. In patients who remain comatose after cardiac arrest, we recommend continuous monitoring of core temperature and actively preventing fever (defined as a temperature > 37.7 degrees C) for at least 72 hours. There was insufficient evidence to recommend for or against temperature control at 32-36 degrees C or early cooling after cardiac arrest. We recommend not actively rewarming comatose patients with mild hypothermia after return of spontaneous circulation (ROSC) to achieve normothermia. We recommend not using prehospital cooling with rapid infusion of large volumes of cold intravenous fluids immediately after ROSC.Peer reviewe

    a multicentre, randomised, parallel-group, assessor-blinded clinical trial (the TTH48 trial): study protocol for a randomised controlled trial

    Get PDF
    Background The application of therapeutic hypothermia (TH) for 12 to 24 hours following out-of-hospital cardiac arrest (OHCA) has been associated with decreased mortality and improved neurological function. However, the optimal duration of cooling is not known. We aimed to investigate whether targeted temperature management (TTM) at 33 ± 1 °C for 48 hours compared to 24 hours results in a better long-term neurological outcome. Methods The TTH48 trial is an investigator-initiated pragmatic international trial in which patients resuscitated from OHCA are randomised to TTM at 33 ± 1 °C for either 24 or 48 hours. Inclusion criteria are: age older than 17 and below 80 years; presumed cardiac origin of arrest; and Glasgow Coma Score (GCS) <8, on admission. The primary outcome is neurological outcome at 6 months using the Cerebral Performance Category score (CPC) by an assessor blinded to treatment allocation and dichotomised to good (CPC 1–2) or poor (CPC 3–5) outcome. Secondary outcomes are: 6-month mortality, incidence of infection, bleeding and organ failure and CPC at hospital discharge, at day 28 and at day 90 following OHCA. Assuming that 50 % of the patients treated for 24 hours will have a poor outcome at 6 months, a study including 350 patients (175/arm) will have 80 % power (with a significance level of 5 %) to detect an absolute 15 % difference in primary outcome between treatment groups. A safety interim analysis was performed after the inclusion of 175 patients. Discussion This is the first randomised trial to investigate the effect of the duration of TTM at 33 ± 1 °C in adult OHCA patients. We anticipate that the results of this trial will add significant knowledge regarding the management of cooling procedures in OHCA patients
    corecore