489 research outputs found

    Controlling competing interactions at oxide interfaces: Enhanced anisotropy in La0.7Sr0.3MnO3 films via interface engineering

    Get PDF
    We investigated thin La0.7Sr0.3MnO3-SrTiO3 heterostructures, where the band alignment is engineered by a variation of La/Sr stoichiometry only at the interface. In thin films, the engineered interface leads to an enhancement of the reversed spin configuration that mimics bulk behavior. Microscopically, this enhancement is closely connected with an increased magnetic anisotropy as well as intercoupling between an e(g) orbital reconstruction and a corresponding anisotropic lattice fluctuation. Furthermore, a reentrant-type behavior, triggered by this intercoupling, is observed in the remanent spin state. This microscopic perspective leads to insights on developing new strategies for maintaining bulk-like properties even in very thin La0.7Sr0.3MnO3 heterostructures.open11910Ysciescopu

    Controlling light-with-light without nonlinearity

    Full text link
    According to Huygens' superposition principle, light beams traveling in a linear medium will pass though one another without mutual disturbance. Indeed, it is widely held that controlling light signals with light requires intense laser fields to facilitate beam interactions in nonlinear media, where the superposition principle can be broken. We demonstrate here that two coherent beams of light of arbitrarily low intensity can interact on a metamaterial layer of nanoscale thickness in such a way that one beam modulates the intensity of the other. We show that the interference of beams can eliminate the plasmonic Joule losses of light energy in the metamaterial or, in contrast, can lead to almost total absorbtion of light. Applications of this phenomenon may lie in ultrafast all-optical pulse-recovery devices, coherence filters and THz-bandwidth light-by-light modulators

    Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients

    Get PDF
    Background: Altered pulmonary defenses in chronic obstructive pulmonary disease (COPD) may promote distal airways bacterial colonization. The expression/activation of Toll Like receptors (TLR) and beta 2 defensin (HBD2) release by epithelial cells crucially affect pulmonary defence mechanisms. Methods: The epithelial expression of TLR4 and of HBD2 was assessed in surgical specimens from current smokers COPD (s-COPD; n = 17), ex-smokers COPD (ex-s-COPD; n = 8), smokers without COPD (S; n = 12), and from non-smoker non-COPD subjects (C; n = 13). Results: In distal airways, s-COPD highly expressed TLR4 and HBD2. In central airways, S and s-COPD showed increased TLR4 expression. Lower HBD2 expression was observed in central airways of s-COPD when compared to S and to ex-s-COPD. s-COPD had a reduced HBD2 gene expression as demonstrated by real-time PCR on micro-dissected bronchial epithelial cells. Furthermore, HBD2 expression positively correlated with FEV1/FVC ratio and inversely correlated with the cigarette smoke exposure. In a bronchial epithelial cell line (16 HBE) IL-1β significantly induced the HBD2 mRNA expression and cigarette smoke extracts significantly counteracted this IL-1 mediated effect reducing both the activation of NFkB pathway and the interaction between NFkB and HBD2 promoter. Conclusions: This study provides new insights on the possible mechanisms involved in the alteration of innate immunity mechanisms in COPD. © 2012 Pace et al

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice

    The oncolytic effect in vivo of reovirus on tumour cells that have survived reovirus cell killing in vitro

    Get PDF
    The use of oncolytic viruses has received considerable attention in recent years and many viruses have proved to be effective against a variety of cancer models and a few are currently being used in clinical trials. However, the possible emergence and outcome of virus-resistant tumour cells has not been addressed. We previously reported the effective use of reovirus against lymphoid malignancies, including the Burkitt's lymphoma cell line Raji. Here we isolated in vitro persistently infected (PI) Raji cells, and cells ‘cured' of persistent reovirus infection (‘cured' cells). Both PI and cured Raji cells resisted reovirus infection and cell killing in vitro. In vivo, the PI cells were non-tumorigenic in SCID mice, but cured cells regained the parental cells' ability to form tumours. Tumour xenografts from the cured cells, however, were highly susceptible to reovirus oncolysis in vivo. This susceptibility was due to the proteolytic environment within tumours that facilitates reovirus infection and cell killing. Our results show that persistent infection by reovirus impedes tumour development and that although PI cells cleared of reovirus are tumorigenic, they are killed upon rechallenge with reovirus. Both the PI and cured states are therefore not likely to be significant barriers to reovirus oncolytic therapy

    Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy

    Get PDF
    Background: To examine the blood glucose profile and the relationship between blood glucose levels and neurodevelopmental outcome in term infants with hypoxic-ischaemic encephalopathy. Methods: Blood glucose values within 72 hours of birth were collected from 52 term infants with hypoxic-ischaemic encephalopathy. Hypoglycaemia [ 150 mg/dL (8.3 mmol/L)] were correlated to neurodevelopmental outcome at 24 months of age. Results: Four fifths of the 468 blood samples were in the normoglycaemic range (392/468:83.8%). Of the remaining 76 samples, 51.3% were in the hypoglycaemic range and (48.7%) were hyperglycaemic. A quarter of the hypoglycaemic samples (28.2%:11/39) and a third of the hyperglycaemic samples (32.4%:12/37) were recorded within the first 30 minutes of life. Mean (SD) blood glucose values did not differ between infants with normal and abnormal outcomes [4.89(2.28) mmol/L and 5.02(2.35) mmol/L, p value = 0.15] respectively. In term infants with hypoxic-ischaemic encephalopathy, early hypoglycaemia (between 0-6 hours of life) was associated with adverse outcome at 24 months of age [OR = 5.8, CI = 1.04-32)]. On multivariate analysis to adjust for grade of HIE this association was not statistically significant. Late hypoglycaemia (6-72 hours of life) was not associated with abnormal outcome [OR = 0.22, CI (0.04-1.14)]. The occurrence of hyperglycaemia was not associated with adverse outcome. Conclusion: During the first 72 hours of life, blood glucose profile in infants with hypoxic-ischaemic encephalopathy varies widely despite a management protocol. Early hypoglycaemia (0-6 hours of life) was associated with severe HIE, and thereby; adverse outcome

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    corecore