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Abstract

Background: Altered pulmonary defenses in chronic obstructive pulmonary disease (COPD) may promote distal airways
bacterial colonization. The expression/activation of Toll Like receptors (TLR) and beta 2 defensin (HBD2) release by epithelial
cells crucially affect pulmonary defence mechanisms.

Methods: The epithelial expression of TLR4 and of HBD2 was assessed in surgical specimens from current smokers COPD (s-
COPD; n = 17), ex-smokers COPD (ex-s-COPD; n = 8), smokers without COPD (S; n = 12), and from non-smoker non-COPD
subjects (C; n = 13).

Results: In distal airways, s-COPD highly expressed TLR4 and HBD2. In central airways, S and s-COPD showed increased TLR4
expression. Lower HBD2 expression was observed in central airways of s-COPD when compared to S and to ex-s-COPD. s-
COPD had a reduced HBD2 gene expression as demonstrated by real-time PCR on micro-dissected bronchial epithelial cells.
Furthermore, HBD2 expression positively correlated with FEV1/FVC ratio and inversely correlated with the cigarette smoke
exposure. In a bronchial epithelial cell line (16 HBE) IL-1b significantly induced the HBD2 mRNA expression and cigarette
smoke extracts significantly counteracted this IL-1 mediated effect reducing both the activation of NFkB pathway and the
interaction between NFkB and HBD2 promoter.

Conclusions: This study provides new insights on the possible mechanisms involved in the alteration of innate immunity
mechanisms in COPD.
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Introduction

Chronic obstructive pulmonary disease (COPD) is an increas-

ingly serious global health problem [1] and it is expected to be the

third most common cause of death in 2020 [2].

Distal airway bacterial colonization may occur in COPD

patients, who often have altered pulmonary defenses [3]. A key

component of the innate defences against infections is represented

by the toll like receptor (TLR) family [4]. Upon activation of TLR

by endogenous and exogenous ligands, the release of chemokines

including IL8 and IP-10 and of defensins may occur [5]. TLR2

and TLR4, predominantly expressed by monocytes/macrophages

and neutrophils [4], are also expressed by lung and bronchial

epithelial cells [6]. The airway epithelium is active in airway

defence mechanisms releasing cytoprotective mucus and defensins

[7] and plays an important role in coordinating local inflammation

and immune responses through the generation of cytokines and

chemokines [8].

The tobacco smoking habit interferes with the innate host

defense system by increasing mucus production, reducing

mucociliary clearance, reducing human beta 2 defensin

(HBD2) release [9], disrupting the epithelial barrier and

stimulating the migration of inflammatory cells into the damaged

tissue [10].

Although it is known that cigarette smoke exposure, a major

determinant of COPD, is able to alter the expression and the

activation of TLR4 in a bronchial epithelial cell line [11], it is

unknown whether this phenomenon occurs in vivo and whether it

is differently altered at different levels of the bronchial tree. In

COPD, the predominant pathology is present in peripheral

airways and lung parenchyma [12]. To what extent central

airways may mirror events occurring in distal lung is uncertain.
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The aim of the present study was to evaluate whether COPD is

associated to the alteration of the expression of TLR4 or to an

altered expression of human beta 2 defensin (HBD2) in central as

well as in distal airways.

Materials and Methods

Patient Population
Patients underwent surgery for lung cancer and were recruited

at ISMETT-Palermo, Italy. The study was approved by the

ISMETT Ethic Committee (#149311-29/05/2006) and was in

agreement with Helsinki Declaration. Written informed consent

was obtained from each patient. The following patient groups

were selected: 1) never smoking patients without COPD (C)

(n = 13); 2) smoking patients (.15 packs/year) without COPD (S)

(n = 12); 3) smoking patients (.15 packs/year) with COPD (s-

COPD) (n = 17); 4) ex smoker patients (.15 pack/year) who had

stopped to smoke by more than one year and with COPD (ex-s-

COPD) (n = 8). COPD patients were treated with bronchodilators

and were classified on the basis of preoperative lung function:

FEV1 less than 80% of reference, FEV1/FVC less than 70%, and

bronchodilatation effect less than 12%. The patients were not

under corticosteroid therapy (neither inhaled nor systemic) and not

under antibiotics and did not have exacerbations during the

month preceding the study. Subjects had negative skin tests for

common allergen extracts and had no past history of asthma or

allergic rhinitis.

Immunohistochemistry
Tissue specimens from tumor-free central bronchi and periph-

eral lung tissue were selected, fixed with 10% Neutral buffer

formalin and embedded in paraffin wax. Sequential sections (3 mm

thick) were placed on poly-L-lysine coated slides, deparaffinized in

xylene, rehydrated in a descending ethanol series and stained with

haematoxylin and eosin (HE).

Immunohistochemistry and image analysis were used to

determine TLR4, and HBD2 expression using rabbit polyclonal

antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) in central

(internal perimeter .6 mm) and distal (internal perimeter , or

= 6 mm) airways [13]. LSAB2 Dako kit (Code Nu K0674) (Dako,

Glostrup, Denmark) and Fuchsin Substrate-Chromogen System

Dako [14] were used for the staining. Rabbit negative control

immunoglobulins (Dako) were used for negative controls. The

immunoreactivity was evaluated blindly by 2 independent

investigators using a Leica (Wetzlar, Germany) microscope 6400

magnification. The length of the basement membrane was

evaluated using a Quantimet 500 MC software (Leica) for Image

Analysis. Results were expressed as the number of positive

epithelial cells/mm basement membrane as reported in a similar

COPD study [15].

Laser capture microdissection
Laser capture microdissection (LMD) was performed using the

Leica AS LMD (Leica Microsystems, Germany) [16] from three s-

COPD and three ex-s-COPD. Epithelial cells (recognized by

morphologic characteristics) were microdissected from the sample

into the cap of a microtube and then processed in the same tube.

Further details are provided in the online supplement.

Real time PCR
Real time PCR was performed as previously described [17].

Total cellular RNA was extracted from s-COPD and ex-s-COPD

micro-dissected tissues using RNeasy Microkit (Qiagen, Milan,

Italy) and reverse-transcribed to cDNA, using Superscript First-

Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA,

USA). Real-time quantitative PCR of HBD2 gene was carried out

on ABI PRISM 7900 HT Sequence Detection Systems (Applied

Biosystems, Foster City, CA, USA) using specific FAM-labeled

probe and primers (Applied Biosystems, TaqMan Assays on

Demand). GAPDH gene expression was used as endogenous

control for normalization. Relative quantification of mRNA was

carried out with comparative CT method.

Stimulation of bronchial epithelial cell lines
16-HBE, an immortalized normal bronchial epithelial cell line,

was used in this study [18].

16HBE were cultured with or without IL-1b (30 ng/ml) (R&D

System, Minneapolis, MN) and with or without 10% cigarette

smoke extracts (CSE) for 24 hrs as previously described [11]. At

the end of stimulation cell extracts were collected for assessing

HBD2 m-RNA expression by Real Time PCR and for assessing

HBD2 protein by flow cytometry, IkB protein expression by

western blot analysis and for ChiP analysis.

Flow cytometry
For flow cytometry, analyses were performed on a Becton

Dickinson FACSCalibur System using a rabbit polyclonal antibody

anti-HBD2 (Santa Cruz Biotechnology) followed by a fluorescein

isothio-cyanate (FITC) conjugated anti-rabbit IgG (Dako).

Analysis was done on 100,000 acquired events for each sample

using cellQuest acquisition and data analysis software (Becton

Dickinson (BD) Mountain View, CA). Negative controls were

performed using an isotype control antibody (BD PharMingen,

Mountain View, CA). For the detection of intracellular HBD2, 16-

HBE were cultured overnight with GolgiStop (2 mM final

concentration) (BD PharMingen). Cells, washed twice in PBS

with 1% FCS, were fixed with PBS containing 4% paraformal-

dehyde for 20 min at room temperature. After two washes in

permeabilization buffer (PBS containing 1% FCS, 0.3% saponin,

and 0.1% Na azide) for 15 min at 4uC, the cells were stained with

rabbit polyclonal antibody anti-HBD2 (Santa Cruz Biotechnology)

followed by a fluorescein isothio-cyanate (FITC) conjugated anti-

rabbit IgG (Dako)and then evaluated by flow-cytometry.

Western blot analysis
The expression of phosphorylated IkB alpha (p IkBa) was

evaluated by western blot analysis as previously described [11].

40 mg of total protein were loaded in the gel. All blots were first

probed using a rabbit polyclonal antibody anti-pIkBa (1:500) (Cell

Signaling Technology Inc) and a rabbit polyclonal antibody anti-

IkBa (1:1000) (Cell Signaling Technology Inc). Revelation was

performed with an enhanced chemioluminescence system (GE

Healthcare, Chalfont St. Giles, UK) followed by autoradiography.

Beta-actin (Sigma) was used as housekeeping protein to normalize

differences in protein loading.

ChiP Analysis
ChiP analysis was performed using the EZ-ChIP kit (Upstate-

Millipore Corporate- Billerica, MA) as previously described [19].

The 16-HBE were stimulated as above mentioned and the

crosslinked chromatin were sonicated to lengths spanning 200–

1000 bp. The samples were precleared with 60 ml of Protein A

Agarose and then incubated with a rabbit polyclonal antibody anti

human NFkB (Santa Cruz Biotechnology). Immunocomplexes were

precipitated using Protein A Agarose. After washing, DNA fragments

were isolated and purified with columns. PCR was performed using

primers spanning the promoter region of HBD2 gene using the
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primers: sense 59-catcccccagtctcttcatct-39 and antisense 59-atgagac-

cagtgtccaggcta-39; sense 59-ggtgtgaatggaaggaactca-39 and antisense

59-ttcagctcctggggatgatac-39; sense 59-tggcaggttataggtcctgag-39 and

antisense 59-ataaaggtcctggtccctggt-39 [20].

Statistics
Age, clinical scores of the patients and Real time PCR data are

expressed as mean6 standard deviation. The Kruskal Wallis and

Mann Whitney U-test were used for comparisons between patient

groups. The Spearman test was used for correlations. Student’s

paired t test was used for in vitro experiments on 16HBE. P,0.05

was accepted as statistically significant.

Results

Demographic characteristics of the subjects
The demographic characteristics and the functional evaluations

of the studied groups are shown in Table 1. All recruited patient

groups were similar with regard to age.

The number of packs/year was similar between S and s-COPD

but it was significantly higher in s-COPD than in ex-s-COPD

(p,0.01).

TLR4 expression
Since smoking habit interferes with the innate host defense

system [10], we first assessed TLR4 expression in airway epithelial

cells of distal and of central airways. TLR4 expression was

increased in the epithelium of distal airways (figure 1 A and figure 2

A) in S, in s-COPD and in ex-s-COPD when compared to C. In

central airways TLR4 expression was increased in S and s-COPD

when compared to C and the TLR4 expression was significantly

higher in S than in s-COPD (figure 1 B and figure 2 B). TLR4

expression were detected in basal and in columnar epithelial cells.

HBD2 Expression
Since the activation of TLR4 leads to the release of defensins

[21], HBD2 expression was assessed. In the epithelium of distal

airways, HBD2 expression was increased in S, s-COPD and in ex-

s-COPD when compared to C (figure 3 A and figure 4 A). In the

epithelium of central airways, HBD2 expression was significantly

reduced in s-COPD when compared to S and to ex-s-COPD

(figure 3 B and figure 4 B).

Correlations
We assessed whether TLR4 and HBD2 expression, in distal and

in central airways, correlated with FEV1 and with FEV1/FVC

ratio or with cigarette smoke exposure (packs/year). No significant

correlation was found between these parameters and TLR4

expression (data not shown). A significant correlation was observed

between the HBD2 expression in central airways and FEV1/FVC

ratio (Figure 5 A) but not between HBD2 and FEV1 (data not

shown). Furthermore, HBD2 expression in central airways

inversely correlated with cigarette smoke exposure (packs/year)

(Figure 5 B).

HBD2 mRNA expression in microdissected bronchial
epithelium

To understand whether a reduced mRNA expression was

responsible of the different HBD2 expression between s-COPD

and ex-s-COPD in central airways, real time PCR was performed

on microdissected bronchial epithelium (figure 6 A) from the two

patient groups. Decreased HBD2 mRNA expression was observed

in s-COPD in comparison to ex-s-COPD (figure 6 B).

In vitro effects of cigarette smoke in bronchial epithelial
cells

To better explore the role of cigarette smoke exposure, HBD2

expression at both mRNA (figure 7 A) and protein level (figure 7 B)

was evaluated in IL1 beta and CSE stimulated bronchial epithelial

cells (16-HBE). CSE did not modify the constitutive expression of

HBD2. IL1 beta induced the HBD2 expression and CSE

significantly counteracted this IL-1 b mediated effect further

supporting the negative effect of cigarette smoke in the expression

of HBD2 by bronchial epithelial cells. The mechanisms underlin-

ing the inhibitory effects of CSE in HBD2 induction were further

explored. In bronchial epithelial cells, IL-1 beta increased the

expression of pIKBa leading to an increased activation of NFkB

pathway and CSE negatively interfered with this phenomenon

(figure 7 C).

Furthermore, we carried out ChIP assays with antibodies

specific to NFkB (figure 7 D) and the results of these experiments

showed that NFkB is detected on the promoter region of HBD2 in

bronchial epithelial cells after incubation with IL-1 b and this

phenomenon was reverted by the presence of CSE.

Discussion

COPD is a poorly understood and slowly evolving disease where

significant pathological anathomical changes are already present

at the diagnosis. Detailed inflammatory profiles of disease

phenotypes are now emerging in COPD.

Table 1. Demographic characteristics of the subjects.

Controls = 13 Smokers = 12 s-COPD = 17 ex-s-COPD = 8

Gender (M/F) 9/4 10/2 15/2 7/1

Age (years)
Means6SD

60613 6369 6468 7067

Packs/year - 59621 70631* 40624

FEV1 % of predicted
Means6SD

89616 77612 68615 7868

FEV1/FVC
% of predicted
Means Means6SD

8366 8069 6067 6564

*p,0.01 vs ex-COPD.
doi:10.1371/journal.pone.0033601.t001
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This study demonstrates for the first time that an over-

expression of TLR4 is present in the epithelium of both central

and distal airways of s-COPD. HBD2 epithelial expression is

reduced in the epithelium of central airways while it is increased in

the epithelium of distal airways of s-COPD and this marker

correlates with airflow obstruction and with the packs/year of

smoking. The reduced expression of HBD2 in the epithelium of

central airways is due to the negative effect of CSE in NFkB

pathway activation.

In COPD, the predominant pathology is present in peripheral

airways and lung parenchyma [12]. To what extent central

airways may mirror events occurring in distal lung is uncertain.

Neutrophils are more numerous in the proximal bronchial tree

and macrophages are predominantly present in distal airways [22].

The inflammatory processes promote the structural and functional

changes associated with chronic bronchitis in the larger bronchi

[23] while in the smaller bronchi and bronchioles, they cause the

occlusion of the lumen by mucus, thickening of the walls, and

Figure 1. Expression of TLR4 in distal and in central airways. Immunohistochemistry for TLR4 in distal (A) and in central airways (B) from
surgical samples of Controls (n = 13), S (n = 12), s-COPD (n = 17) and ex-s-COPD (n = 8) subjects. Cells were stained with an anti-TLR4 antibody.
Negative control were performed using rabbit immunoglobulins negative control (see materials and methods for details). A) Individual counts for the
number of positive epithelial cells/mm basement membrane in distal airways. Horizontal bars represent median values. * p,0.05 values in figure
represent Mann-Whitney U test analyses. B) Individual counts for the number of positive epithelial cells/mm basement membrane in central airways.
Horizontal bars represent median values. * p,0.05 values in figure represent Mann-Whitney U test analyses.
doi:10.1371/journal.pone.0033601.g001

Figure 2. TLR4 immunostaining in distal and in central airways. A) Representative negative control and representative TLR4 immunostaining
(red stain) in distal airways of a Control, of a Smoker, of a s-COPD and of an ex-s-COPD. B) Representative negative control and representative TLR4
immunostaining (red stain) in central airways of a Control, of a Smoker, of a s-COPD and of an ex-s-COPD. For central airways a particular from a 4006
magnification was selected and showed.
doi:10.1371/journal.pone.0033601.g002

Innate Immunity Responses in COPD
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narrowing of the lumen [12]. This study was designed to

understand whether innate immunity response mechanisms are

differently altered at different levels of the bronchial tree in

smokers and in COPD patients (current smokers and ex-smokers)

with stable disease.

Innate immunity relies on pattern recognition receptors that

recognize structures common to many microorganisms and

endogenous ligands such as heat shock proteins. A study from

Pons [24] showed that TLR-2 is up-regulated in peripheral blood

monocytes harvested from COPD patients, either when clinically

stable or when exacerbated. Droemann et al. [25] reported that

alveolar macrophages from stable COPD patients and smokers

express less TLR-2 than never smokers. We demonstrate here for

the first time that TLR4 expression is increased in central and

distal airway epithelium in both smokers and s-COPD. These

findings strongly suggest that the expression of TLRs may be

differently modified in different cell compartments (immunocom-

petent cells or airway epithelial cells) of the bronchial tree.

Furthermore, the increased expression of TLR4 in the epithelium

of central airways in smokers and in s-COPD is consistent with the

Figure 3. Expression of HBD2 in distal and in central airways. Immunohistochemistry for HBD2 in distal (A) and in central airways (B) from
surgical samples of Controls (n = 13), S (n = 12), s-COPD (n = 17) and ex-s-COPD (n = 8) subjects. Cells were stained with an anti-HBD2 antibody.
Negative control were performed using rabbit immunoglobulins negative control (see materials and methods for details). A) Individual counts for the
number of positive epithelial cells/mm basement membrane in distal airways. Horizontal bars represent median values. * p,0.05 values in figure
represent Mann-Whitney U test analyses. B) Individual counts for the number of positive epithelial cells/mm basement membrane in central airways.
Horizontal bars represent median values. * p,0.05 values in figure represent Mann-Whitney U test analyses.
doi:10.1371/journal.pone.0033601.g003

Figure 4. HBD2 immunostaining in distal and in central airways. A) Representative negative control and representative HBD2
immunostaining (red stain) in distal airways of a Control, a Smoker, a s-COPD and an ex-s-COPD. B) Representative negative control and
representative HBD2 immunostaining (red stain) in central airways of a Control, of a Smoker, of a s-COPD and of ex-s-COPD. For central airways a
particular from a 4006magnification was selected and showed.
doi:10.1371/journal.pone.0033601.g004
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results of a previous in vitro study published by our group showing

that CSE increase the expression of TLR4 in a bronchial epithelial

cell line [11].

TLRs establish the inflammatory setting in response to

infections or tissue damage and provides a low-grade activation

of the innate immune system for day-to-day lung structure stability

[25]. High grade activation of TLR signalling leading to increased

production of cytokines and reactive oxidant contributes to

experimental emphysema [26].

CSE in mice induce airway neutrophilia via activation of

TLR4 signalling [27] and in bronchial epithelial cells, in vitro,

orientate the activation of TLR4 toward an increased IL-8

release and a reduced IP-10 release leading to an increased

neutrophil chemotaxis and to a reduced lymphocyte chemotaxis

thus altering the balance between innate and adaptative

responses [11]. This unbalance may amplify lung inflammation

since lung inflammation can be excessive when the adaptive

pulmonary immune responses are inappropriate [28]. TLR4

activation by external agents is mainly due to gram negative

bacteria and is also finalized to the release of antimicrobial

peptides including HBD2, a molecule with a potent effect against

gram negative bacteria [20]. Respiratory epithelial cells require

TLR4 for the induction of HBD2 by LPS [29]. HBD2, mainly

present in structural epithelial cells, exerts specific chemotactic

activity for neutrophils [30] and may amplify TLR responses

acting as an endogenous TLR ligand [31]. We show here that

HBD2 is reduced in central airways of s-COPD patients when

compared to smoker subjects and COPD who stopped to smoke

and correlates with the degree of airway obstruction assessed by

the reduction in FEV1/FVC ratio that, as previously reported

[32], is a good spirometric parameter to represent airflow

limitation. Moreover, HBD2 expression in central airways

inversely correlates with pack/years of smoking, strongly

suggesting that cigarette smoke exposure crucially negatively

affects the expression of HBD2 in COPD patients. In this regard,

it has been recently demonstrated that cigarette smoke extracts

reduce the expression of HBD2 in primary bronchial epithelial

cells from smokers and from COPD patients [9].Our in vitro

experiments showing that the exposure of CSE in bronchial

epithelial cells blocks the induction of HBD2 mRNA generated

by exposure to IL-1 b, a cytokine with a crucial role in the

inflammation of COPD, confirm and extend these observation

providing some explanation on the mechanisms that contribute to

this phenomenon. Cigarette smoke interferes with the innate host

Figure 5. Correlations between the expression of HBD2 in central airways and functional parameters. The expression of HBD2 in central
airways of Controls (n = 13), S (n = 12), s-COPD (n = 17) and ex-s-COPD (n = 8) was correlated with FEV1/FVC ratio (A) and packs/year (B) by Spearman
Correlation test.
doi:10.1371/journal.pone.0033601.g005

Figure 6. Expression of HBD2 m-RNA in central airways. HBD2 m-RNA expression was assessed by Real time PCR in microdissected bronchial
epithelium from s-COPD (n = 3) and from ex-s-COPD (n = 3) (see materials and methods for details). A) Representative images showing the bronchial
epithelium before (on the left) and after (on the right) laser microdissection (LMD). B) Expression of HBD2 m-RNA in microdissected bronchial
epithelium. GAPDH gene expression was used as endogenous control for normalization. Relative quantitation of mRNA was carried out with
comparative CT method. (mean6SD). * p,0.05.
doi:10.1371/journal.pone.0033601.g006
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defence system by increasing mucus production, reducing

mucociliary clearance, disrupting the epithelial barrier and

stimulating the migration of inflammatory and immune cells

[28]. In addition, the exposure of airway epithelium to smoke

blocks the LPS-induced activation of NFkB pathway [11] [33], a

signal pathway with a crucial role in the HBD2 synthesis.

Accordingly, it has been previously described that the exposure of

airway epithelium to smoke inhibits the HBD2 induction by

bacteria [34]. To further support these data, in the present study,

we demonstrate that CSE inhibits IL-1 b induced NFkB pathway

activation and in turn negatively interferes with the interaction

between NFkB and the promoter region of HBD2. Subjects with

reduced HBD2 gene copies are predisposed to Crohn’s disease

[35] and here, a reduced HBD2 expression in the epithelium of

central airways is present in s-COPD further supporting the

concept that the de-regulation of the HBD2 expression in a

specific compartment of the bronchial tree may contribute to the

disease development. Additional mechanisms may account for

the reduced HBD2 expression in central airways of current

smoker COPD. HBD2 synthesis may be promoted by leptin [36]

and in epithelial cells of bronchial biopsies, the expression of

leptin and its receptors is reduced in mild-to-severe COPD

patients [37].

Since not all smokers develop COPD [38], the reduced

expression of HBD2 in central airways might identify smokers

susceptible to develop COPD. Further studies are needed to

validate this hypothesis. Moreover, decreased HBD2 together with

an increased TLR4 expression in central airway epithelium may

suggest an impairment in the activation of innate responses at this

level that in turn may favour the microbial invasion to distal airways

and to the parenchyma. Physiologically, the distal airways are sterile

while the airways of COPD patients are chronically colonized by

potential respiratory pathogens [39]. Chronic bacterial colonization

together to an oxidant/antioxidant unbalance can stimulate the

host immune system and cause a chronic airway inflammation [40]

that in turn may promote the tissue damage observed in distal

airways and lung parenchyma of COPD patients. Bronchiolar

inflammation correlates with functional impairment and temporally

precedes emphysema [22]. Our findings that in distal airways of s-

COPD both HBD2 and TLR4 epithelial expression are increased

support the concept that an increased activation of innate immunity

responses may occur at this level. In the distal airways of smokers

with COPD and acute respiratory failure high levels of HBD2

increase neutrophil survival [40] thus contributing to amplify the

inflammatory responses which, in turn, promote the occlusion of the

lumen by mucus, thickening of the walls, and narrowing. In

addition, ex-s-COPD have an increased epithelial HBD2 expression

in central airways further supporting the concept that smoking

cessation may alter the inflammatory profile of the airway epithelial

cells. Ex-smokers with COPD have significantly less epithelial

squamous cell metaplasia, proliferating cell numbers, and show a

trend towards reduced goblet cell area than current smokers with

COPD [41].

In conclusion, this study demonstrates that although an over-

expression of TLR4 is present in central and in distal airways of s-

COPD and of S, HBD2 is reduced in central airways but not in

distal airways of s-COPD and correlates with the degree of airflow

obstruction and with smoking history.

Figure 7. Effects of CSE in bronchial epithelial cells (16-HBE). 16-HBE cells were cultured in the presence and in the absence of IL-1 b and of
CSE (10%) (n = 3) (see materials and methods for details). A) Expression of HBD2 m-RNA in 16-HBE by real time PCR. GAPDH gene expression was used
as endogenous control for normalization. Relative quantitation of mRNA was carried out with comparative CT method. (mean6SD). * p,0.05 versus
baseline. ** p,0.05 versus IL-1 beta. B) Representative experiment (one out of three experiments) showing the expression of HBD2 protein in 16-HBE
by flow cytometry. The expression of HBD2 is expressed as percentage of HBD2 positive cells. C) Evaluation of p-IkBa or t-IkBa by western blot
analysis. Membranes were then stripped and incubated with goat polyclonal anti–ß-actin. Representative western blot analysis (one out of three
experiments). Lane1 = baseline; lane 2 = CSE 10%;lane 3 = IL1 beta; lane 4 = CSE+IL1 beta. D) ChiP assay using anti-NFkB antibody and PCR using
primers (forward 59-GGTGTGAATGGAAGGAACTCA-39 reverse 59-TTCAGCTCCTGGGGATGATAC-39) spanning the promoter region of HBD2 gene were
performed (see Materials and Methods for details) One out of two experiments is shown. Lane 1 = DNA marker; Lane 2 = baseline; lane 3 = CSE 10%;
lane 4 = IL1 b; lane 5 = CSE+IL1 b.
doi:10.1371/journal.pone.0033601.g007
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27. Doz E, Noulin N, Boichot E, Guénon I, Fick L, et al. (2008) Cigarette Smoke-

Induced Pulmonary Inflammation Is TLR4/MyD88 and IL-1R1/MyD88
Signaling Dependent. The Journal of Immunology 180: 1169–1178.

28. Curtis JL, Freeman CM, Hogg JC (2007) The immunopathogenesis of chronic

obstructive pulmonary disease: insights from recent research. Proc Am Thorac
Soc 4: 512–521.

29. MacRedmond R, Greene C, Taggart CC, McElvaney N, O’Neill S (2005)

Respiratory epithelial cells require Toll-like receptor 4 for induction of human
beta-defensin 2 by lipopolysaccharide. Respir Res 6: 116.

30. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a

chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils.
Immunology 111: 273–281.

31. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, et al. (2002)

Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2.
Science 298: 1025–1029.

32. Busacker A, Newell JD, Keefe T, Jr., Hoffman EA, Granroth JC, et al. (2009) A

Multivariate analysis of Risk factors for Air trapping Asthmatic phenotype as
measured by quantitative CT analysis. Chest 135: 48–56.

33. Pace E, Ferraro M, Uasuf CG, Giarratano A, Grutta SL, et al. (2011) Cilomilast

counteracts the effects of cigarette smoke in airway epithelial cells. Cell Immunol
268: 47–53.

34. Herr C, Beisswenger C, Hess C, Kandler K, Suttorp NR, et al. (2009) , for the

CAPNETZ Study Group. (2009) Suppression of pulmonary innate host defence
in smokers. Thorax 64: 144–149.

35. Fellerman K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, et al. (2006) A
chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene

copy number predisposes to Crohn disease of the colon. Am J hum Genet 79:

439–448.

36. Kanda N, Watanabe S (2008) Leptin enhances human beta-defensin-2

production in human keratinocytes. Endocrinology 149: 5189–5198.

37. Bruno A, Chanez P, Chiappara G, Siena L, Giammanco S, et al. (2005) Does
leptin play a cytokine-like role within the airways of COPD patients? Eur

Respir J 26: 398–405.

38. Cosio MG, Hale KA, Niewoehner DE (1980) Morphologic and morphometric
effects of prolonged cigarette smoking on the small airways. Am Rev Respir Dis

122: 265–321.

39. Sethi S, Murphy MF (2001) Bacterial infection in chronic obstructive pulmonary
disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14: 336–363.

40. Pace E, Giarratano A, Ferraro M, Bruno A, Siena L, et al. (2011) TLR4

upregulation underpins airway neutrophilia in smokers with chronic obstructive
pulmonary disease and acute respiratory failure. Hum Immunol 72: 54–62.

41. Lapperre TS, Sont JK, van Schadewijk A, Gosman MM, Postma DS, et al.

(2007) Smoking cessation and bronchial epithelial remodelling in COPD: a
cross-sectional study. Respir Res 8: 85.

Innate Immunity Responses in COPD

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e33601


