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1 Introduction and summary

The AdS/CFT correspondence is a concrete and explicit realization of the holographic

principle. In the prototypical example of AdS3, it has been known for a long time that

the asymptotic symmetry group consists of two Virasoro algebras with central charges

c = c̄ = 3ℓ
2G [1]. That fact, combined with various other observations [2, 3], suggests that

pure gravity with negative cosmological constant and AdS3 boundary conditions is dual

to a two-dimensional CFT, however the exact nature of that CFT remains a mystery and

may not even exist [4, 5].

Recently, tools developed in the context of AdS/CFT have been exploited outside of

their original high-energy/string theory realm, with potential groundbreaking applications

to astrophysics, condensed matter, and collider physics [6–8]. A common feature of this

trend is the extension of the holographic dictionary to non-AdS spaces, making it possible

to relate a wider variety of geometries and dual field theories. One such class of spaces,

dubbed warped AdS3, has attracted a lot of attention recently. It consists of deformations

of AdS3 that preserve a SL(2,R) × U(1) ⊂ SL(2,R) × SL(2,R) subgroup of isometries.

Depending on the norm of the preserved U(1) Killing vector, these spaces are referred to as

time-like, space-like, or null WAdS3. Though some have been known for quite a while (e.g.,

in some region of parameter space, time-like WAdS3 is just Gödel space-time [9–11]), the

space-like representative has attracted a great deal of attention [12–22] since the conjecture

of Anninos et al. that topologically massive gravity (TMG) with negative cosmological

constant and space-like WAdS3 boundary conditions is dual to a two-dimensional CFT [23].

The status of the conjecture is currently unclear since it has not been possible to give a clear

geometric realization of the expected symmetries [20–22]. Understanding the holographic

properties of space-like WAdS3 is also motivated by the fact that it appears as part of the

near horizon extreme Kerr geometry (NHEK) and is believed to play a central role in the

recently proposed Kerr/CFT correspondence [6].

In general, the question of identifying the field theory dual to a given gravitational

background is a very intricate one. There is, however, a notable exception: when the given

background can be embedded in string theory and realized as the near horizon geometry

of some brane configuration. Consider an embedding of an AdS3 space-time in type IIB

string theory on AdS3 × S3 × T 4: in that case, in the duality frame with only Ramond-

Ramond fluxes, the dual CFT can be identified as the worldvolume theory on the D1/D5

system which flows in the IR to an N = (4, 4) SCFT which is in the moduli space of a

symmetric product orbifold of T 4 [24–26]. In the duality frame which involves NS-NS fluxes

only, the correspondence can be made even more precise on the gravity side by studying

the worldsheet CFT, given by a SL(2,R) × SU(2) × U(1)4 WZW model [27–31].1 In this

case, the (super-)Virasoro generators of the dual CFT actually act linearly on the Hilbert

space of the worldsheet CFT, as was first shown by Giveon, Kutasov, and Seiberg in [33]

and further developed in [34–38]. However, since the dual space-time theory is not at the

1In fact, recently a worldsheet CFT describing the Ramond-Ramond background was constructed and

studied in [32].
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orbifold point in its moduli space where it can be solved explicitly, a direct bulk/boundary

correspondence can be made only for protected quantities, e.g. correlators of BPS states.

The aim of this paper is to explore some aspects of holography for WAdS3 spaces in

the context string theory. These spaces can naturally be embedded in supergravity [39–42]

and, in fact, can be realized as exact string theory backgrounds as marginal deformations

of the SL(2,R) × SU(2) × U(1)4 WZW model [39, 43–45]. Given the worldsheet CFT, we

can explore the symmetries of the space-time theory and attempt to extract information

about any holographically dual theory. Although we don’t expect to learn much about the

exact nature of a theory dual to WAdS3 in TMG (it’s not clear that TMG can be obtained

as a consistent truncation of string theory), we can learn some quantitative features of the

theory dual to WAdS3 in Einstein gravity (coupled to matter fields) which, in turn, could

yield qualitative lessons for TMG.

All types of WAdS3 spaces — time-like, space-like and null — can be realized as exact

string backgrounds through an elliptic, hyperbolic, or parabolic marginal deformation of

the SL(2,R) WZW model, respectively [44]. The hyperbolic and parabolic deformations are

currently the most interesting from the space-time point of view: quotients of the hyperbolic

deformation yield black hole solutions and parts of the NHEK geometry, while both can

yield gravity duals of non-relativistic systems [46–48]. However, from the worldsheet point

of view it is the elliptic deformation that is the most tractable because the spectrum

of ̂SL(2,R) is unduly complicated in the hyperbolic or parabolic basis. This seemingly

technical issue is one of the reasons why the description of the string spectrum on AdS3,

including the subtle issue of the spectrally flowed sectors [49–51], is better understood than

it is for BTZ black holes (see however [52–54]) even though the two spaces are related by

discrete identifications. In particular, it is not even clear how the space-time Virasoro

algebra arises from the worldsheet description of the BTZ black hole [53] which is why, in

this paper, we will exclusively study the elliptic (time-like) deformation of AdS3, hoping to

one day return to tackle the null and space-like cases.

Nevertheless, time-like warped AdS 3 is interesting on its own since this family of space-

time metrics, obtained by Rebouças and Tiomno as a one-parameter extension of the

original Gödel universe [10], are all homogeneous space-times with closed time-like curves

(CTCs) through each point. It was shown in [44] that the long string solutions in these

space-times are the more relevant probes of this pathological space-time since they eventu-

ally wrap the CTCs (unlike the short strings which correspond to localized worldsheets).

Thus, a holographic understanding of the worldvolume CFT living on a stack of long string

would help us to understand how string theory deals with CTCs.

In section 2, we review the embedding of time-like WAdS3 into string theory from both

the supergravity and worldsheet perspectives. We will see that only time-like stretched

WAdS3 (in the terminology of [23]), corresponding to Gödel spaces, can be supported by

real matter fields. We also discuss the issue of the renormalization of the background fields,

showing that this embedding of WAdS3 corresponds to an exact string background.

In section 3, we address the main point of this paper for the bosonic string, namely

the construction of a space-time symmetry algebra from the WAdS3 worldsheet theory. We

start by reviewing the contruction of Giveon, Kutasov, and Seiberg for pure AdS3 [33].
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It was shown there that the two space-time Virasoro algebras have central charges cst =

c̄st = 6k|w|, where k is the level of the ̂SL(2,R) and w is the spectral flow sector of the

string, representing the number of times the string worldsheet wraps around the origin.

This corresponds to the central charge of the worldvolume theory living on |w| long strings

near the boundary [25].

Turning to the analysis of the elliptic deformation of the SL(2,R)×U(1) WZW model,

which corresponds to fibering an S1 over a time-like WAdS3, we find that there always

exists at least one space-time Virasoro algebra with central charge c̄st = 6k|w| arising from

the anti-holomorphic side of the theory. From the holomorphic side, the only space-time

charges that can generically be constructed are a global U(1)2 that correspond to the zero-

mode of a would-be space-time Virasoro algebra, Lst
0 , and the zero-mode of a would-be

space-time Û(1), J st
0 . The existence of both Lst

0 and L̄st
0 suggests that the dual theory is at

least a two-dimensional Lorentz-invariant theory, if not conformal. However, we observe

that when the S1 radius R and squashing parameter h satisfy

2hR√
k

=
µ

ρ
∈ Q , (1.1)

for µ and ρ relatively prime positive integers, it becomes possible to construct a second

Virasoro algebra with central charge

{
ĉst = 6k(ρw + µω) , w > 0 ,

ĉst = −6k(ρw + µω) , w < 0 ,
(1.2)

where ω represents the winding number around around the fibered S1. Thus, for a given h

and k, we can tune the S1 radius R so that, in appropriate units, for irrational values there

is only one space-time Virasoro algebra, while for rational values there are two copies of

the Virasoro algebra, yielding a two-dimensional CFT which generically has central charges

where c̄st − ĉst 6∈ 24Z — indicating a lack of modular invariance — and which can even

have a negative central charge when the worldsheet wraps a spacetime CTC, indicating a

loss of unitarity.

In section 4, we extend the bosonic construction to heterotic and type II superstrings

on WAdS3 × S1 × S3 × T 4. In the type II case, we find that space-time supersymmetry is

broken in half by the deformation except when 2hR√
k
∈ Z, in which case all supersymmetries

are preserved. In the heterotic case, because of the asymmetry of the worldsheet theory,

we can choose to deform the anti-holomorphic SL(2,R) and preserve all space-time super-

symmetries, or we can deform the holomorphic (supersymmetric) SL(2,R) and generically

break all space-time supersymmetries, except when 2hR√
k

is integer.

In section 5, we perform an asymptotic symmetry analysis of the ten-dimensional

background, much in the spirit of Brown and Henneaux [1]. We find that when (1.1) is

satisfied and ρ = 1, the sl(2,R) ⊕ u(1) ⊕ u(1) isometry algebra is enhanced to sl(2,R) ⊕
sl(2,R)⊕u(1). In this case, sl(2,R)⊕sl(2,R) naturally extends to two copies of the Virasoro

algebra with central charges

cst = c̄st =
3ℓ
√

1 + 2h2

2G3
, (1.3)
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where G3 is the three-dimensional Newton’s constant and ℓ2 = k. When ρ 6= 1 but (1.1)

still holds, the global isometry is restricted to sl(2,R) ⊕ u(1) ⊕ u(1) but there is still a

natural extension to two Virasoro algebras where cst = ρc̄st = ρ3ℓ
√

1+2h2

2G3
, coinciding with

the worldsheet interpretation when there is no winding around the fibered S1. Then we

check the supersymmetries preserved by the backgrounds and find the same results as in

section 4.

Finally in section 6, we discuss possible interpretations of our results as well as

open questions. Further background material and complimentary results are collected

in the appendices.

2 Warped AdS3 as an exact string background

In this section we review an embedding of time-like warped AdS3 in string theory. This

space-time is a solution of three-dimensional Einstein gravity with a Maxwell-Chern-Simons

U(1) gauge field and scalars, obtained as a consistent truncation of ten-dimensional super-

gravity compactified on S1 × S3 × T 3. Since the ten-dimensional solution only involves

non-trivial NS-NS fields, the analysis applies equally to type II or heterotic string theories.

After the supergravity analysis we will demonstrate that this background corresponds to an

exact string solution by realizing the worldsheet sigma model as a deformed WZW model,

the renormalization properties of which are well known [55–57].

2.1 Supergravity: 3d Kaluza-Klein reduction and solution

Let us begin with the action for the common bosonic sector of type IIA/B and heterotic

supergravities in Einstein frame,

S =
1

2κ2
10

∫
d10x

√−g
[
R10 −

1

2

(
∂Φ
)2 − 1

12
e−ΦHMNPH

MNP

]
. (2.1)

Then we compactify on S3×T 3×S1 while retaining the KK-gauge field from the S1, taking

the ten-dimensional background to be2

ds210 = e−
3Y
2

[
eXds23 + e−X(dϕ+A)2

]
+ eY L 2

Sds2(S3) + ds2(T 3) , (2.2a)

H = hSL
3
SVol(S3) + Ĥ + F̂ ∧ (dϕ+A) , (2.2b)

where Ĥ ≡ dB̂ − F̂ ∧A, LS is the radius of S3, hS is a constant, and ds2(S3) and Vol(S3)

denote the metric and volume form on the unit three-sphere, respectively. This reduces to

S3d =
4π3L 3

SRVT 3

2κ2
10

∫
d3x

√−g3
[
R3 −

1

4
e−2XF 2 − 1

4
e3Y −ΦF̂ 2 (2.3)

− 1

12
e−Φ

(
Ĥ2e3Y −2X + 6h2

se
X− 9Y

2

)
+ Lkin(Y,X,Φ) +

6

L 2
S

eX− 5Y
2

]
.

2The truncation of the KK-reduced theory to massless modes is known to be consistent for S3 [58].
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The equation of motion for B̂ requires e−Φ−2X+3Y ⋆3 Ĥ = h3 = constant , so we

can simply integrate out Ĥ. We can further truncate (consistently) to a theory where

eX+ 3

2
Y − 1

2
Φ = 2 and Â = 1

2A, arriving at the action

S3d =
1

2κ2
3

∫
d3x

√−g3
[
R3 −

1

8
e3Y −ΦF 2 + Lkin(Φ, Y ) − 2h2

3e
2Φ−6Y

+
12

L2
S

e−4Y + 1

2
Φ − h2

Se
−6Y − 1

2
Φ

]
− h3

4κ2
3

∫
A ∧ F . (2.4)

This consistent truncation admits the WAdS3 solution

ds23 =
k

8
e3Y −Φ

[
dr2 + sinh2 r dα2 − (1 + 2h2)(dβ + cosh r dα)2

]
, (2.5a)

A =
√
k h(dβ + cosh rdα) , (2.5b)

e2Y =
h2

S

4
e−Φ , (2.5c)

where Φ is a constant, eY and hS have been rescaled to set LS = 1 (in units of α′), and

k =
hS

2
, (2.6a)

h
2 =

2e
5

2
Φh2

3 − h2
S

2h2
S

. (2.6b)

As measured in string-frame, the ten-dimensional metric is the product of a T 4 at arbitrary

volume with an S3 at radius
√
k and an S1 bundle over WAdS3 at radius

√
k.

Heterotic supergravity can also be dimensionally reduced on S3 × T 4 to similarly

obtain Einstein-Maxwell-CS theory with scalars, the main difference being that the gauge

field arises from a ten-dimensional gauge field instead of from a Kaluza-Klein circle. The

truncated three-dimensional theory will also admit WAdS3 as a solution.

2.2 Worldsheet CFT description: deformed WZW model

We now review how this solution is obtained as a solvable worldsheet conformal field

theory following [43]. Let’s begin with a bosonic SL(2,R) WZW model corresponding

to string propagation in an AdS3 space-time. Using the Euler angles parameterization,

g = eiσ3α/2eσ1r/2eiσ3β/2, the worldsheet action reads

SSLk
(r, α, β) =

k

8π

∫
d2z

[
∂r∂̄r − ∂β∂̄β − ∂α∂̄α− 2 cosh r∂α∂̄β

]
. (2.7)

The background fields are, thus,3

ds2 =
k

4
(dr2 + sinh2 rdα2 − (dβ + cosh r dα)2) , (2.8a)

B =
k

4
cosh r dβ ∧ dα . (2.8b)

3α′ = 1 in this section.
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This is AdS3 in global coordinates, taking its more familiar form if we write α = t−φ, β =

t+ φ, and r = 2̺.

Next, we add a free, compact boson ϕ with radius R and then deform by an exactly

marginal, asymmetric, current-current deformation to obtain a WAdS3 background:

S = SSL(2)(r, α, β) +
1

4π

∫
d2z ∂ϕ∂̄ϕ− 2h

π
√
k

∫
d2z J3(z)i∂̄ϕ , (2.9)

where J3 = ik
4 (∂β + cosh r∂α) is the holomorphic elliptic/time-like current of SL(2,R).

This deformation corresponds to turning on Bµϕ = Gµϕ = GφφAµ, where Gϕϕ = 1
2 ,

µ = r, α, β, and

A =
√
k h(dβ + cosh r dα) . (2.10)

A Kaluza-Klein reduction down to three dimensions yields the background4

ds2 = (Gµν −GϕϕAµAν)dx
µdxν

=
k

4

[
dr2 + sinh2 r dα2 − (1 + 2h2)(dβ + cosh r dα)2

]
, (2.11a)

B =
k

4
cosh rdβ ∧ dα , (2.11b)

A =
√
k h(dβ + cosh rdα) . (2.11c)

This solution is exactly the same as the solution in (2.5). Of course in string theory models

like AdS3 × S3 × T 4, the WZW level k is quantized to integer values.

2.3 Renormalization of the background fields

For a generic WZW model, it is known that the background fields extracted from the

classical action are actually exact to all orders in α′, modulo a shift of the level k→k+ cg,

where cg is the dual coxeter number.

In the same way, one might wonder how the background fields are renormalized for

the WAdS3 solution. For this, we notice that (2.9) can be rewritten as [44]

S = SSL(2)

(
r, α, β − 2h√

k
ϕ

)
+

1

4π
(1 + 2h2)

∫
d2z ∂ϕ∂̄ϕ+

h
√
k

4π

∫
d2z

(
∂β∂̄ϕ− ∂̄β∂ϕ

)
,

(2.12)

where the last term is a total derivative whose raison d’etre is to contribute a phase to the

partition function in winding sectors. Being the formal sum of two WZW models (modulo

the total derivative term), the renormalization in the effective action can be computed as

usual, resulting in a shift k→k− 2 in the ̂SL(2,R) level. This leads to a renormalization of

4In heterotic string theory, one can take ϕ(z̄) to be an antiholomorphic chiral boson corresponding to

heterotic gauge-bundle degrees of freedom. In this case, the analysis is more subtle but eventually leads to

the same three-dimensional background fields as this Kaluza-Klein reduction.

– 7 –
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the four-dimensional fields which, in turn, yields the three-dimensional background:

ds2 =
k − 2

4

[
dr2 + sinh2 r dα2 −

(
1 + 2

(k − 2)h2

k + 4h2

)
(dβ + cosh r dα)2

]
, (2.13a)

B =
k − 2

4
cosh r dβ ∧ dα , (2.13b)

A = (k − 2)
√
k

h

k + 4h2
(dβ + cosh r dα) , (2.13c)

which coincides with the classical expressions in the large k limit, as it must. As promised,

the renormalization corresponds only to a redefinition of the parameters, hence, we can

treat the solution (2.5), or equivalently (2.11a), as an exact perturbative string background.

3 Space-time symmetry algebra I: bosonic strings

We now turn to the main part of this work and investigate the space-time symmetries

associated with these WAdS3 string backgrounds. For simplicity, we start with bosonic

string theory on WAdS3×U(1)×M where M is an arbitrary unitary CFT with c = 22− 6
k−2 .

In [33], the authors constructed the space-time Virasoro algebra of AdS3 in the free-

field limit of the worldsheet CFT. This free-field limit corresponds to a long string near

the boundary of AdS3 that winds w times around the origin. As such, the central charge

‘felt’ by the string depends on its winding as the string effectively forms a w-sheeted cover

of the boundary [59]. In section 3.1, we briefly review the calculation of [33] in coordinates

that will suit our purposes when confronting the deformed model, studied in section 3.2.

In appendix D, we construct the charges using solely SL(2,R) primaries without reference

to free fields.

3.1 Lightning review of the Giveon-Kutasov-Seiberg construction

We review here the construction of the space-time Virasoro algebras in AdS3 using a free-

field description of the bosonic string in an AdS3 × U(1) × M background [33]. We will

consider a single copy of the algebra that is built out of holomorphic worldsheet operators,

remembering that there is a second copy built from analogous antiholomorphic operators.

We start with the holomorphic ̂SL(2,R) currents in the elliptic/time-like basis which

satisfy the algebra

J3(z)J3(0) ∼ − k

2z2
, J3(z)J±(0) ∼ ±1

z
J±(0) , J+(z)J−(0) ∼ k

z2
− 2

z
J3(0) . (3.1)

We can express the elliptic Cartan current as J3 = i
√

k
2 ∂T by introducing a free, time-like,

chiral boson T (z) with OPE T (z)T (0) ∼ ln z.5 This allows us to decompose the remaining

currents, J±(z), in terms of SL(2,R)/U(1) parafermions as (see appendix A for background

on parafermions):

J+(z) = i
√
k ψ1 e

−i
q

2

k
T
(z) , J−(z) = −i

√
k ψ†

1 e
i
q

2

k
T
(z) . (3.2)

5Throughout this section and the following ones, we work in units where α′ = 2. By an abuse of notation,

the antiholomorphic counterpart of a chiral boson ϕ(z) will be denoted by ϕ̄(z̄) while the associated non-

chiral boson will be denoted by ϕ(z, z̄).
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We now use the free-field representation of non-compact parafermions, valid near the

boundary of the target space (see (A.7) in appendix A), to study the long string sectors of

the worldsheet theory. In terms of the free bosons, T and χ, and the linear dilaton, s(z, z̄),

an ̂SL(2,R) × ̂SL(2,R) primary of spin j is represented as

Vw
j,m,m̄(z, z̄) = e

2

α+
j s(z,z̄)

e
i
q

2

k
(mχ(z)+m̄χ̄(z̄))

e
−i

q

2

k ((m+ kw
2

)T (z)+(m̄+ kw
2

)T̄ (z̄)) , (3.3)

where α+ ≡
√

2k − 4. Representations are labeled by their spectral flow, w ∈ Z, which

corresponds to an outer automorphism of the left and right affine algebras.6 The left and

right conformal dimensions of these primaries are

∆ = −j(j − 1)

k − 2
− wm− kw2

4
, (3.4a)

∆̄ = −j(j − 1)

k − 2
− wm̄− kw2

4
. (3.4b)

In order to realize the space-time Virasoro algebra as charges acting on the worldsheet

Hilbert space, we need to identify holomorphic (1, 0) currents which are obtainable as Kač-

Moody descendents of the holomorphic ̂SL(2,R) primaries, V0
0,m,0. As this operator has

m̄ = 0, consistency of the theory requires that m = n ∈ Z.7 In the free-field formulation,

the most general charge that can be obtained is

Lst
n ≡

∮
dz

2iπ

[
b+n (∂χ+ ∂T ) + b−n (∂χ− ∂T ) − ibsn∂s

]
e
i
q

2

k
n(χ−T )

. (3.5)

The condition for the operator to be a Virasoro primary and, hence, BRST invariant is

nα+ b
+
n +

√
k

2
bsn = 0 . (3.6)

The ∂(χ− T ) term is the integral of a total derivative — equivalently, a BRST exact term

— for any n 6= 0 and can be chosen freely. We make the gauge choice b−n = 0 for n 6= 0.

Computing the commutator [Lst
n , L

st
n′ ] and demanding it form a Virasoro algebra yields

the constraints

b−0 =
i

2

√
k

2
, 2i

√
2

k
b+mb

+
n′ = b+n+n′ , (3.7)

the latter of which can be solved by setting b+n = − i
2

√
k
2 . Thus, we have the world-

sheet charges

Lst
n =

kp̂

4
δn,0 −

∮
dz

2iπ

[
1

2

√
k

2
i(∂χ + ∂T ) − n

√
k − 2

2
∂s

]
e
i
q

2

k
n(χ−T )

(3.8)

6On the single cover of the SL(2, R), we could have different spectral flow parameters, w and w̄, for

left- and right-moving sectors, provided that level-matching is satisfied. However, working on AdS3, the

universal cover of SL(2, R), forces w = w̄.
7This constraint comes from enforcing level matching ∆ − ∆̄ ∈ Z under spectral flow by J3 and J̄3. It

also corresponds to the quantization of angular momentum in global AdS3 [49].
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which satisfy a Virasoro algebra with central charge cst = 6kp̂, where p̂ ≡ i
√

2
k

∮
dz
2iπ (∂χ−

∂T ). The value of p̂ depends on the spectral flow sector of the string, which can easily be

seen by considering the operator inside a correlation function

〈
i

√
2

k

∮
dz

2iπ
(∂χ− ∂T )(z)Vw

j,m,m̄(0)
〉

= w
〈
Vw

j,m,m̄(0)
〉
. (3.9)

In fact, the value w has the physical interpretation of the number of times the worldsheet

of the long string wraps around the origin. The central charge is then8

cst = 6k|w| . (3.10)

Of course, the entire discussion above can be repeated for the antiholomorphic sector of

the theory, leading to a commuting space-time Virasoro algebra L̄st
m with central charge

c̄st = 6k|w|. As we said, this computation is for a given spectral flow w, however, the

spectral flow is not conserved by the interactions (which take place far from the free-

field limit region s → −∞) and, thus, does not correspond to a ‘superselection’ sector

of the theory.

As said in the introduction, having a brane construction of the worldsheet theory leads

to interesting insights. Consider the case of AdS3×S3×T 4, which is the near horizon limit

of N5 = k NS5-branes and N1 fundamental strings. This superstring background has a six-

dimensional string coupling constant fixed to gs = N5/N1, which means that the number

of fundamental strings must be large in the perturbative regime. One can argue that the

spectral flow parameter must be bounded by w 6 N1 as a consequence of the ‘stringy

exclusion principle’ [60]. We cannot see this bound from the worldsheet description for two

reasons: one is that we cannot properly describe multi-string states since the worldsheet

theory is a first-quantized theory; the other is because states where w ∼ N1 have a strong

backreaction on the background. Said differently, no more fundamental strings can ‘escape’

to the boundary of AdS3 than the N1 F1’s which are part of the background geometry.

Note that by taking the upper bound for the spectral flow, w = N1 (corresponding to the

configuration, inaccessible to perturbation theory, where all the fundamental strings of the

background are long strings close to the boundary), one obtains the central charge that is

expected from the analysis of the D1-D5 low-energy dynamics, c = 6N1N5.

3.2 Bosonic warped AdS3

We would like to repeat this calculation in the deformed WZW model (2.12) in order to

find which of the space-time charges survive after the deformation.9 To that end, we add

8The relation between the space-time and worldsheet time coordinates for a long string in the w-sector

is t = wτ . When w > 0, the origin of the planar worldsheet of the long string is the infinite past, so that is

where we should insert the twist operator that defines our long string state. On the other hand, when w < 0,

the infinite space-time past is at future infinity on the planar worldsheet, implying that we should insert

the twist operator there. Relative to future infinity, the contour used in computing the central charge (3.9)

is oriented in a clockwise direction, thus contributing a second minus sign (in addition to w = −|w|) and

ensuring the central charge is positive.
9Since the ̂SL(2, R) current J3(z) is a non-normalizable operator, we expect that the asymptotic charges

of the background will change.
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a Û(1) theory, represented by a free boson ϕ(z, z̄) = ϕ(z) + ϕ̄(z̄) :

J = i∂ϕ(z) , J̄ = i∂̄ϕ̄(z̄) , (3.11)

with the OPE ϕ(z)ϕ(0) ∼ − ln z. This boson is compactified at radius R: ϕ(z, z̄) ∼=
ϕ(z, z̄) + 2πR. The current-current deformation then takes the form

∆S = − 2h

π
√
k

∫
d2z J3J̄ . (3.12)

As explained earlier, this corresponds geometrically to deforming AdS3 × S1 into an S1

bundle over a WAdS3 base.

Appendix B briefly explains the connection between these marginal deformations and

rotations of the lattice that defines the torus on which the free bosons (those generating

the Cartan currents) live. The upshot is that instead of deriving new OPEs for our fields,

we can use the original OPEs and construct operators with charge assignments that are

determined by the rotated torus identifications (said another way, we can work in the

orthonormal basis). In particular, the deformation that we consider here corresponds to

an O(2) ⊂ O(2, 2) rotation that mixes the charges of T (z) with those of ϕ̄(z̄).

Primary operators of the undeformed theory (3.3), dressed with a U(1) primary with

left and right momenta pL and pR, lead to operators of the form

e
2

α+
j s(z,z̄)+i

q

2

k
(mχ(z)+m̄χ̄(z̄))

e
−i

q

2

k

(
M ′T̂ (z)+(m̄+ kw

2
)
¯̂
T (z̄)
)
+ipLϕ̂(z)+ip′R

¯̂ϕ
, (3.13)

where T̂ and ϕ̂ have canonical OPEs. The lattice rotation gives us a relation between the

new charges, the primed quantities, and charges for the original variables, the unprimed

quantities. We have the relation

M ′ =

(
m+

kw

2

)
cosα−

√
k

2
pR sinα , (3.14a)

p′R = pR cosα+

√
2

k

(
m+

kw

2

)
sinα . (3.14b)

The rotation angle α is related to the deformation parameter h in (3.12) through [43]

cos2 α =
1

1 + 2h2
. (3.15)

The orthonormal basis is useful because it allows us to have our cake and eat it, too; we

get to use fields with canonical OPEs and we can understand the new charges in terms of

the unrotated charges that we already understood:

m− m̄ = n ∈ Z , pL
R

=
p

R
∓ ωR

2
, p, ω ∈ Z , (3.16)

and, of course, m and m̄ are further constrained depending on which representation of
̂SL(2,R) we are considering.
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We can now immediately read off the conformal dimensions of these operators:

∆ = −j(j − 1)

(k − 2)
+
m2

k
− 1

2

(
−
√

2

k

(
m+

kw

2

)
cosα+ pR sinα

)2

+
1

2
p2

L +N , (3.17a)

∆̄ = −j(j − 1)

(k − 2)
− wm̄− kw2

4
+

1

2

(
pR cosα+

√
2

k

(
m+

kw

2

)
sinα

)2

+ N̄ . (3.17b)

We are interested in looking for holomorphic (1, 0) operators that we can use to define

space-time charges. Holomorphicity imposes the constraints j = 0, m̄ = 0, w = 0, N̄ = 0,

and p′R = 0. Using (3.14b), p′R = 0 implies that

m = −
√
k

2
pR cotα . (3.18)

The final condition we must satisfy is reduced to

∆ = −1

2
p2

R +
1

2
p2

L +N = −ωp+N = 1 . (3.19)

If we consider operators in the sector that has no winding around the fibered circle ϕ, for

example, then we must set ω = 0 andN = 1. Finally, we have the condition m−m̄ = n ∈ Z;

since we have set m̄ = 0, generically we can only construct a single operator withm = p = 0.

However, if the rotation angle α and the compactification radius R satisfy

√
2

k
R tanα =

2hR√
k

∈ Q , (3.20)

then we have an infinite set of holomorphic operators yielding consistent space-time

charges.10 When this holds, let us write

2hR√
k

=
µ

ρ
, (3.21)

where µ and ρ are relatively prime positive integers. The space-time charges are then

obtained for p ∈ µZ and m ∈ ρZ. At this point, one might wonder whether this result

is immediately suspect since the physical radius of the circle could fluctuate locally; how-

ever, deformations of the radius of the circle are not normalizable and, therefore, do not

correspond to finite energy excitations of the theory (similarly for deformations of h).

With these constraints in mind, we have candidate holomorphic operators,

of spin j = 0,

e
i
q

2

k
n(χ−ϕ̂ tan α−T̂ sec α) × oscillators . (3.22)

The form of these operators suggests defining a new orthonormal basis of free bosons:

T̃ = T̂ secα+ ϕ̂ tanα , ϕ̃ ≡ T̂ tanα+ ϕ̂ secα , (3.23)

10It is also possible to construct a Virasoro algebra using a winding state of the bU(1) theory, rather than

a momentum state. Then we would find a relation similar to (3.20) but with the T-dual radius R̃ = 2

R
.
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where T̃ is time-like and ϕ̃ is space-like. Since the stress tensor and the OPEs of these

free fields are the same as those used in the undeformed case, we can almost conclude that

we have a space-time Virasoro algebra constructed out of these worldsheet holomorphic

operators with modes given by

Lst
n

?
= A0δn,0 −

∮
dz

2iπ

[
1

2

√
k

2
i(∂χ+ ∂T̃ ) − n

√
k − 2

2
∂s

]
e
i
q

2

k
n(χ−T̃ )

. (3.24)

The catch comes precisely from the constraint (3.20) — when it is not satisfied, the one

and only consistent operator is Lst
0 . Even when this constraint is satisfied, we have the

restriction n ∈ ρZ which means that only some of the modes survive. This subset of

Virasoro generators, by themselves, generates a full Virasoro algebra. Indeed, if we call

n ≡ ρn̂, for n̂ ∈ Z, we note that the subset {Lρn̂|n̂ ∈ Z} ⊂ {Ln|n ∈ Z} generates a Virasoro

algebra if we define

L̂n̂ ≡ 1

ρ
Lρn̂ +

c

24

(
ρ− 1

ρ

)
δn̂,0 . (3.25)

This algebra has central charge ĉ = ρc, where c is the central charge of the algebra spanned

by all the Ln’s.

Thus, when the condition (3.20) holds we can construct a space-time Virasoro algebra

with the modes

L̂st
n̂ =

kp̂

4
ρ δn̂,0 −

1

ρ

∮
dz

2iπ

[
1

2

√
k

2
i(∂χ+ ∂T̃ ) − ρn̂

√
k − 2

2
∂s

]
e
i
q

2

k
ρn̂(χ−T̃ )

. (3.26)

Following the previous discussion, the central charge of this space-time Virasoro algebra,

in a given sector of spectral flow w and winding ω around the extra S1, is given by ĉst =

6kp̂ where

p̂ =

√
2

k

∮
dz

2πi

(
i∂χ− i∂T̃

)
=

√
2

k

∮
dz

2iπ
(i∂χ− i secα∂T̂ − i tanα∂ϕ̂)

= w +

√
2

k
tanα(pR − pL) = w +

µ

ρ
ω (3.27)

and where we used the relation (3.20) to simplify. Therefore, when there exists a second

Virasoro algebra, we obtain ĉst = 6k(ρw + µω).

To interpret this result, notice that in the time-like warped AdS 3 background, we

still have long string solutions in sectors of non-zero spectral flow [43]. As in AdS 3, the

relation between space-time and worldsheet time is t = wτ ,11 independent of the winding

number ω around the circle. Thus, as in the AdS 3 computation, the orientation of the

integration contour that gives the central extension should be reversed for negative spectral

flow parameter w. We expect that the left space-time central charge is, then, given by

{
ĉst = 6k(ρw + µω) , w > 0 ,

ĉst = −6k(ρw + µω) , w < 0 .
(3.28)

11Although the manifold now has CTCs, we still call time the coordinate corresponding to the isometry

J3
0 + J̄3

0 of the worldsheet theory.
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Of course, on the antiholomorphic side nothing has been deformed so we always have a

commuting space-time Virasoro algebra with c̄st = 6k|w|. Again, these results apply in a

sector of given spectral flow w and winding ω, see the discussion below (3.10). We will

discuss the implications of (3.28) in the next subsection.

So far, we have ignored another family of potential space-time charges at our disposal

which are made from worldsheet primaries of the form i∂ϕ̃ e
i
q

2

k
n(χ−T̃ )

. Let us consider the

case where the affine U(1) used in the construction is at level kg. In this case, we obtain a

space-time Û(1) algebra when (3.20) holds, with generators

Ĵ st
n̂ =

∮
dz

2iπ

√
kg

2
i∂ϕ̃ e

i
q

2

k
ρn̂(χ−T̃ )

, (3.29)

and only Ĵ st
0 when it fails. The level kst

g of this space-time affine U(1) is

kst
g

2
= [Ĵ st

1 , Ĵ
st
−1] = ρ

kg

2

∮
dz

2iπ

√
2

k
(i∂χ− i∂T̃ ) , (3.30)

so we obtain {
kst

g = kg(ρw + µω) , w > 0 ,

kst
g = −kg(ρw + µω) , w < 0 .

(3.31)

In a similar way, any current algebra at level ki from the internal CFT, M, will be promoted

to an affine symmetry in space-time at level ±ki(ρw + µω).

To summarize, we find a somewhat peculiar result when WAdS3 is constructed in

string theory as the base of an S1 fibration: we can tune the warping parameter h and

the S1 radius R so that when 2hR√
k

is rational, we have two space-time Virasoro algebras

(generically with different central charges), whereas when it is irrational we have only one

Virasoro algebra along with Lst
0 and an additional global U(1) symmetry, J st

0 . If the reader

worries this is somehow an artifact of the free field calculation, we have reproduced the

above calculation in appendix D without reference to free fields. Furthermore, in section 5

we perform the asymptotic symmetry analysis on the four-dimensional geometry and find

precisely the same result from supergravity, though only in the sector without winding

around the S1, ω = 0.

4 Space-time symmetry algebra II: heterotic and type II strings

Next, we would like to find what space-time symmetries for heterotic or type IIA/B su-

perstrings on WAdS3 ×S1 × T 3 ×S3 can be realized in the worldsheet CFT. In particular,

one might wonder whether the symmetry enhancement found in the bosonic case gives

rise to a full extra superconformal algebra in space-time. To answer this, we’ll consider a

current-current deformation involving the elliptic/time-like holomorphic current of the left

N = 1 ̂SL(2,R) algebra (hence chosen as the supersymmetric side in heterotic) with the

antiholomorphic current i∂̄ϕ from the S1. Thus, this analysis is common to type II and

heterotic models, with another possibility briefly considered in section 4.2.
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Consider, then, a (1, 0) or (1, 1) SL(2,R) × U(1) WZW model. The holomorphic
̂SL(2,R) current algebra at level k is generated by

J A(z) ≡ JA(z) − i

2
ǫABC : ψBψC : (z) , (4.1)

where the JA are generators of a bosonic SL(2,R)k−2 and the ψA are three free Majorana-

Weyl fermions, normalized as ψAψB ∼ 1
zη

AB , with metric η33 = −1, η+− = 1
2 , ǫ312 = 1.

This theory admits an N = (1, 0) supersymmetry on the worldsheet with supercurrent

given by

G =

√
2

k

(
− ψ3J 3 +

1

2
ψ+J− +

1

2
ψ−J+

)
. (4.2)

In (1, 0) superspace notation, the current multiplet is ΞA =
√

k
2 ψ

A + θJ A. Thus, we

can deform the space-time action as before while preserving worldsheet supersymmetry by

adding an operator of the form

∆S = − 2h

π
√
k

∫
d2z dθ Ξ3∂̄ϕ = − 2h

π
√
k

∫
d2z J 3∂̄ϕ . (4.3)

As the underlying lattice rotation acts on the lattice of J 3 and not on the purely

bosonic current J3, it is useful to split the (1, 0) WZW model in terms of non-compact

parafermions which correspond to the superconformal coset CFT SL(2,R)/U(1). Thus, we

write

J 3 = i

√
k

2
∂T , (4.4)

where T is a time-like boson. The SCFT SL(2,R)/U(1) actually admits an N = (2, 0)

superconformal algebra; definingQ ≡
√

2
k , we can use free fields to write the generators as12

T = −1

2
∂s∂s− 1

2
∂X∂X − 1

2
∂H1∂H1 +

Q

2
∂2s , (4.5a)

G± = (i∂X +Qi∂H1 ± ∂s)e∓iH1 , (4.5b)

JR = −i∂H1 +Qi∂X , (4.5c)

with the bosonization

Ψ± ≡ ΨX ± iΨs

√
2

≡ e∓iH1 . (4.6)

We also bosonize
1√
2
(ψϕ ± ψ3) = e±H2 , (4.7)

with H2 time-like.

12This description of the SCFT is usually used in the literature to describe the (mirror) N = 2 Liouville

theory, see e.g. [61].
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We can use a lattice rotation to understand how a primary in the deformed theory

relates to one in the undeformed theory. We consider primaries in the left NS sector, of

the form

Vw
jmm̄pLpR

= eQjs+iQ(mX+m̄X̄−(m− k
2
w)T−(m̄− k

2
w)T̄)ei(pLϕ+pRϕ̄)e

1

2
(iσ1H1+σ2H2) × Vother(z, z̄)

(4.8)

with σ1 and σ2 even — the Ramond sector of the theory, where σ1 and σ2 are odd, will

be considered below. The corresponding deformed operator comes from an O(2) rotation

between the T and ϕ̄ lattices (respectively left and right). We achieve the deformed operator

by the replacements

m− kw

2
→
(
m− kw

2

)
cosα−Q−1pR sinα , (4.9a)

pR → pR cosα+Q

(
m− kw

2

)
sinα . (4.9b)

As before, the hatted fields ϕ̂ and T̂ correspond to the orthonormal basis and, thus, main-

tain canonical OPEs along the deformation line.

The conformal dimensions of spinless operators (j = 0) with no spectral flow (w = 0)

in the deformed theory will be

∆ =
m2

k
− 1

2

(
Qm cosα− pR sinα

)2
+
σ2

1 + σ2
2

8
+
p2

L

2
, (4.10a)

∆̄ =
1

2

(
pR cosα+Qm sinα

)2
. (4.10b)

Again, our goal will be to find integrated holomorphic (1, 0) operators that we can use

to build the space-time Virasoro charges. In the usual way, we will look for holomorphic

(1
2 , 0) operators On that allow us to write Ln = {G− 1

2

,On}. Then the Ln’s will be BRST-

invariant if {G 1

2

,On} = 0.

Setting ∆̄ = 0 implies that the right-moving theory is in the NS sector (for both type

II and heterotic). To be holomorphic, the operators must satisfy

m = −cotα

Q
pR . (4.11)

Since m − m̄ = n ∈ Z in the NS-NS sector and since m̄ = 0, we arrive at the same

constraint (3.20) as in the bosonic case. When this condition is satisfied, then conformal

dimension becomes

∆ =
σ2

1 + σ2
2

8
+

1

2

(
p2

L − p2
R

)
=
σ2

1 + σ2
2

8
− ωp . (4.12)

As before, we consider winding-less states (ω = 0). Then the possible building blocks for

the space-time supercharges satisfy

σ2
1 + σ2

2 = 4 , (4.13)

which is solved with (σ1, σ2) = (±2, 0) or (0,±2).
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As in the bosonic case, we expect that a special role is played by the rotated fields T̃

and F, defined through a change of orthonormal basis by

T̃ = T̂ secα+ ϕ̂ tanα , F ≡ T̂ tanα+ ϕ̂ secα . (4.14)

Naturally, one can define a similar change of basis for the fermionic superpartners so that

the supercurrent is preserved:

Ψ3 = ψ3 secα+ ψϕ tanα , ΨF ≡ ψϕ secα+ ψ3 tanα . (4.15)

Thus, the supercurrent of the theory can be written as

Ĝ =
1√
2
(G+ +G−) − iΨ3∂T̃ + iΨF∂F , (4.16)

with G± as in (4.5b).

We don’t expect the fermionic field ΨF to be part of the construction of the space-time

Virasoro algebra since it’s orthogonal to the superpartner of T̃. Therefore, the candidate

Virasoro generators are of the form

Lst
n =

∮
dz

2iπ

{
G− 1

2

, (b−n Ψ− + b+n Ψ+ + b3nΨ3)eiQn(X−T̃)
}
. (4.17)

As before, because of the constraint (3.20) these operators exist only for n ≡ 0 mod ρ

when (3.20) is satisfied, and only for n = 0 otherwise. Demanding that O is a supercon-

formal primary leads to the constraint

(n+ 1)b−n + (n− 1)b+n +
√

2nb3n = 0 . (4.18)

Moreover, for n 6= 0 this operator is defined modulo exact terms which take the form

{G− 1

2

, eiQn(X−T̃)} = Qn

(
Ψ+ + Ψ−

√
2

− Ψ3

)
eiQn(X−T̃) , (4.19)

corresponding to the equivalence

(b−n , b
+
n , b

3
n) ∼= (b−n + λ, b−n + λ, b3n −

√
2λ) , ∀ λ ∈ R . (4.20)

Using this gauge freedom to set b3n = 0 for n 6= 0, O will be a superconformal primary if

we choose b±n = − 1√
2Q

(1 ± n) for n 6= 0. This yields space-time Virasoro generators

Lst
n̂ =

kp̂

4

(
ρ+

1

ρ

)
δn̂,0

− 1

Qρ

∮
dz

2iπ

[
i∂X−ρn̂∂s+Qρn̂ΨXΨ3−iQρ2n̂2Ψs(ΨX−Ψ3)

]
eiQρn̂(X−T̃) , (4.21)

where

p̂ ≡ iQ

∮
dz

2iπ

(
∂X − ∂T̃

)
= w +

µ

ρ
ω . (4.22)
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As in the bosonic case, the central charge of this algebra is
{
ĉst = 6k(ρw + µω) , w > 0 ,

ĉst = −6k(ρw + µω) , w < 0 .
(4.23)

Again, we can also construct an affine U(1) algebra in space-time from the extra free boson

F using operators of the form {G− 1

2

, ΨFeiQρn̂(X−T̃)}, as well as other affine algebras in

space-time coming from the internal CFT (for instance, SU(2)k × U(1)3).

We would like to interpret this result in parallel to the discussion around (3.10). The

time-like warped AdS 3 space-time, for any value of the warping parameter h, is known to

have CTCs passing through each point. The worldsheets of long fundamental strings have

their radius increasing linearly with time and eventually must wrap these CTCs. The anal-

ysis of space-time symmetries that we gave above is relevant for the worldvolume conformal

field theory on these long strings, hence we expect to find some holographic signatures of

a pathological behavior. From equation (4.23) above, one can notice immediately two

important facts:

1. cst − c̄st /≡ 0 mod 24, generically, implying that the purported dual CFT is not

modular invariant and, hence, inconsistent.

2. Nothing seems to prevent cst from becoming arbitrarily negative for large negative

winding numbers ω, spoiling unitarity of this potential CFT. This would correspond

to the worldvolume theory on w long strings that wind around the circle.13

These aspects deserve further study and will hopefully be clarified if a brane construc-

tion of this background is found. It’s also worth mentioning that space-like WAdS3 does not

suffer from the same pathologies as its time-like cousin, so we expect better behavior of the

space-time central charge in that case. Unfortunately, the analysis in the hyperbolic/space-

like basis of SL(2,R) is significantly more difficult and, thus, left for future work.

4.1 Space-time supersymmetry

We have seen that for rational values of 2hR√
k

it is possible to construct a space-time Vira-

soro algebra from the left-moving worldsheet CFT, though it has a different central charge

than the space-time Virasoro algebra arising from the right-moving sector. The next nat-

ural question to ask is whether this space-time Virasoro algebra admits a supersymmetric

extension at rational values of 2hR√
k

(of course, in the type II case we always have at least

one space-time super-Virasoro algebra from the right-moving sector).

In order to answer this question, we search for space-time supercharges in the R-NS

sector of the worldsheet CFT. Let us first remind ourselves of the form of the space-time

supercharges in the undeformed background, AdS3 × U(1) × M/U(1), where the CFT

M/U(1) has an N = 2 superconformal symmetry and central charge cm = 9 − 6
k . We use

the notation

J = i∂U , J
M/U(1)
R =

√
3 − 2

k
i∂V . (4.24)

13As the string coupling goes like gs ∼ 1/N1, regardless of the winding number around the S1, we expect

that the ‘stringy exclusion principle’ still gives the bound w ≤ N1 here for any value of ω.
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In this case, the operators

G±,st
r =

∮
dz

2iπ
e−φL/2e

r
(
−iH1+iQ(X−T)±H2

)
± i

2

(q

3− 2

k
V −QU

)
, r = ±1

2
, (4.25)

(where the bosonizations were given in (4.6) and (4.7) and φL is a superghost) are BRST

invariant and mutually local and, therefore, act as space-time supercharges on the physical

string Hilbert space. The other modes of G±,st, for which r 6= ±1
2 , are then obtained by

acting with Lst
n .

Now, let’s search for potential space-time supercharges in the deformed case. As a first

attempt, let’s identify the distinguished U(1) symmetry of the undeformed case with the

U(1) used in the deformation, i.e. let U = ϕ. Next, bosonize the rotated fermions of the

deformed model (4.15),

e±H ≡ 1√
2
(ΨF ± Ψ3) . (4.26)

Then it is natural to guess that the space-time supercharges take the form

G±,st
r

?
=

∮
dz

2iπ
e−φL/2e

r
(
−iH1+iQ(X−T̃)±H

)
± i

2

(q

3− 2

k
V −QF

)
(4.27)

since the OPEs and the supercurrent (4.16), expressed in terms of the rotated variables in

the deformed case, are the same as those in the undeformed case expressed in terms of the

unrotated variables, thus guaranteeing BRST invariance.

So we have identified an operator with the OPEs that a space-time supercurrent should

have, but we have to check that it’s actually in the spectrum of the deformed model. From

the definition of the rotated boson F, (4.14), and from the definition of the vertex operators

in (4.8), we arrive at the identifications

m cosα−Q−1pR sinα = r secα± 1

2
tanα , (4.28a)

pL = −Qr tanα∓ 1

2
Q secα , (4.28b)

pR cosα+Qm sinα = 0 . (4.28c)

Eliminating pR between the first and third equations leads to

m = r ∓ 1

2
sinα , (4.29)

but since we are in the R-NS sector, where m̄ = 0 implies that m ∈ Z + 1
2 , and since

conformality requires r = ±1
2 , this operator can only be part of the spectrum if α ≡ 0

mod π, i.e. in AdS3.

Even in the undeformed case, this construction is not possible for a generic U(1)

lattice (at least, without any shift orbifold mixing it with another CFT) since one would

need pL = ∓Q/2 and pR = 0. In the case of AdS3 × S3 × T 4, this is accomplished by

choosing the U(1) to be the Hopf fiber of the S3. This suggests another construction by
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using another U(1) in order to construct the space-time supercharges. To be concrete,

consider deforming the model

SL(2,R)k × U(1)ϕ ×

[
SU(2)k

U(1)k
× U(1)k

]

Z
× U(1)3 , (4.30)

using ϕ to generate the warping, as before, while building the space-time supercharges with

the U(1)k of the SU(2)k algebra, as is done in the undeformed geometry AdS3 × S3 × T 4.

Let us denote the U(1)k current by i
√

k
2 ∂Z and bosonize

e±H3 =
1√
2
(ψZ ± Ψ3) . (4.31)

As above, the idea is to use the rotated bosons and fermions (T̃,Ψ3) and (F,ΨF) in order

to work with canonical OPEs. This would suggest defining supercharges as

G±,st
r =

∮
dz

2iπ
e−φL/2e

r
(
−iH1+iQ(X−T̃)±H3

)
± i

2

“
q

3− 2

k
V −QZ

”

, r = ±1

2
. (4.32)

These operators have m = r and

pL = pR = −Qr tanα = − 2h√
k

= − µ

ρR
, (4.33)

where we have used (3.20).

Therefore, these physical space-time supercharges can be constructed in the worldsheet

theory when ρ = 1, meaning that in these cases we actually have a space-time super-

Virasoro algebra (two, in the case of type II strings). On the other hand, for generic values

of 2hR√
k

there is no space-time supersymmetry generated by the left-moving side of the

worldsheet. In type II constructions, this implies that half of space-time supersymmetry

is broken, while for heterotic constructions this implies that all supersymmetry is broken

(though in the heterotic case, we can instead deform the right-movers and preserve all of

space-time supersymmetry). We will find the same results from supergravity in section 5.

4.2 Heterotic strings with a gauge bundle

There is one more case to consider: in heterotic string theory, instead of realizing the

WAdS3 background with an S1 fibration we can use a ten-dimensional Abelian gauge field;

in other words, we take ϕ̄ to be a right-moving chiral boson.

In order to understand the space-time symmetries of the solution, we redo the same

analysis as before except that we have to impose the constraint pL = 0. Recall that charges

corresponding to the space-time Virasoro algebra should be built from operators satisfying

∆ =
σ2

1 + σ2
2

8
− 1

2
p2

R +N =
1

2
, (4.34)

where pR is in the (E8 × E8)1 or Spin(32)1/Z2 lattice, see (4.12). Note that compared to

the previous analysis, H2 refers to a different bosonization of ψ3 than before (4.7) since ψϕ

is not part of the heterotic model.
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Considering that worldsheet fermions of the ‘internal’ CFT do not appear in the vertex

operators we are looking for, the left GSO projection imposes that σ1 + σ2 ≡ 2 mod 4.

Comparing with the discussion below (4.12), it is clear that one cannot use the same

construction as for the case with the S1 fibration. Indeed, to get a generator Lst
n one would

need to solve the constraint

n2 tan2 α = kN . (4.35)

If the deformation parameter is such that tan2 α is rational, one cannot exclude a priori

that such operators — which involve some oscillator modes — can be physical for some

values of n. However, due to the proliferation of oscillator combinations for a generic level

N , it seems impossible to give a general proof that there is no new space-time algebra,

although it seems highly probable to us that the U(1) is not extended to a second Virasoro.

The best that we can say is that similar operators exist in the case the U(1) arises from a

geometric S1, see (3.19): in that case, we have a better handle on the space-time analysis of

the asymptotic symmetries (see section 5) and find no evidence that a space-time Virasoro

algebra can be built from operators with N > 1. We expect that the result is the same in

this case.

5 Space-time symmetry algebra III: supergravity analysis

In previous section, we analyzed the space-time symmetries of certain WAdS3 backgrounds

using worldsheet techniques. In this section, we’ll explore the same question from the

supergravity point of view. First, we look at the asymptotic bosonic symmetries of these

backgrounds, then we move on to consider supersymmetries.

5.1 Asymptotic bosonic symmetries

To analyze the asymptotic symmetries, let us return to our ten-dimensional back-

ground, (2.2):

ds2 = ds24 + ds2S3 + ds2T 3 , (5.1)

where

ds24 = k(− cosh2̺dt2 + d̺ 2 + sinh2̺dφ2)− 2h
√
k dϕ(cosh2̺dt+ sinh2̺dφ) +

1

2
dϕ2 , (5.2)

̺, t, and φ, are the usual global coordinates on AdS3, and ϕ ∈ [0, 2πR).14 The 3-sphere

has radius LS and T 3 has volume denoted by VT 3 . The equations of motion impose that

the AdS3 and S3 have radii
√
k.

14As in section 2, we work in units where α′ = 1.
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Solving the Killing equations corresponding to the four-dimensional part of the metric

yields the following vector fields:





l̄0 = 1
2(∂t + ∂φ) ,

l̄1 = 1
2e

i(t+φ)(tanh̺∂t − i∂̺ + coth̺∂φ) ,

l̄−1 = 1
2e

−i(t+φ)(tanh̺∂t + i∂̺ + coth̺∂φ) ,

(5.3a)





l0 = 1
2(∂t − ∂φ) ,

l1 = 1
2e

i
(
t−φ+ 2h√

k
ϕ
)
(tanh̺∂t − i∂̺ − coth̺∂φ) ,

l−1 = 1
2e

−i
(
t−φ+ 2h√

k
ϕ
)
(tanh̺∂t + i∂̺ − coth̺∂φ) ,

(5.3b)

t0 = ∂ϕ , (5.3c)

forming an sl(2,R)⊕ sl(2,R)⊕ u(1) algebra. However, since ϕ has periodicity 2πR, l1 and

l−1 are globally-defined vector fields only if

2hR√
k

∈ Z , (5.4)

which coincides precisely with (3.20) for ρ = 1.

By studying the asymptotic symmetries of the above ten-dimensional background, one

naturally expects the sl(2,R) ⊕ sl(2,R) part of the exact symmetries to be extended into

the sum of two Virasoro algebras, as is familiar from AdS3 gravity [1]. We will refrain from

performing a full analysis — this would involve determining a set of consistent boundary

conditions that include both the background (5.1) as well as finite temperature excitations

of it obtained by discrete identifications, e.g. [22, 62] — and instead will make a natural

guess for the form of the Virasoro algebra generators, leaving the full analysis for future

work. To that end, consider the following large diffeomorphisms:

l̄n =
1

2
ein(t+φ)(tanh̺∂t − in∂̺ + coth̺∂φ) , (5.5)

ln =
1

2
e
in
(
t−φ+ 2h√

k
ϕ
)
(tanh̺∂t − in∂̺ − coth̺∂φ) . (5.6)

These satisfy the Virasoro algebra, without central term,

i[lm, ln] = (m− n)lm+n , i[l̄m, l̄n] = (m− n)l̄m+n .

Assuming that these diffeomorphisms yield finite, asymptotically conserved, integrable

charges defined on an appropriate phase space that includes the background (5.1), and

assuming that they are represented through the Poisson bracket (E.14), we can compute

the central term of the algebra using (E.16).15 Doing so, we find central terms

Klm,ln =
c

12
m(m2 − α0)δm+n,0 , Kl̄m,l̄n =

c̄

12
m(m2 − α0)δm+n,0 , (5.7)

15The Mathematica code implementing the expressions for the charges displayed in the appendix can be

downloaded from the homepage of G. Compère: http://www.physics.ucsb.edu/∼gcompere/

– 22 –



J
H
E
P
0
1
(
2
0
1
1
)
0
3
0

where

c = c̄ =
6π3

√
1 + 2h2

√
k
2RL

3
SVT 3

G10
(5.8)

and Gd is the d-dimensional Newton’s constant. When reduced to 4 or 3 dimensions, with

G10 = 2π2L3
SVT 3G4 = 2

√
2π3RL3

SVT 3G3, we find

c = c̄ =
3
√

k
2

√
1 + 2h2πR

G4
=

3
√
k
√

1 + 2h2

2G3
. (5.9)

A few comments are in order. In (5.7), α0 is a constant which can be set to any value

by a redefinition of the l0 and l̄0 generators, i.e. by fixing the energy of the background,

so we can make the canonical choice of α0 = 1. When the squashing parameter goes

to zero, the three-dimensional central charges coincide with the Brown-Henneaux charges

as expected (the same holds for space-like warped AdS3, see [39]). However, the central

charges depend not only on the parameters present in the Lagrangian (e.g. k and G3) but

also on a parameter of the solution, h. This is reminiscent of the Kerr/CFT correspondence

where the central charge depends on the angular momentum J of the solution, but it is in

contrast to the situation in TMG where the squashing parameter of the solution is entirely

fixed in terms of the gravitational Chern-Simons coupling.

It’s also important to notice that the condition (5.4) can be relaxed to

2hR√
k

≡ µ

ρ
∈ Q , (5.10)

where µ, ρ ∈ Z are relatively prime, if we only keep the subset of ln generators where

n ∈ ρZ. Indeed, the vector fields l′n ∼ 1
ρ lρn (see (3.25)) are globally defined and will

generate a Virasoro algebra with central charge c′ = ρc [63–65].

Previous treatments of the asymptotic symmetries of WAdS3 only revealed the exis-

tence of a single Virasoro algebra, supplemented with current algebras [21, 22, 66],16 which

has some tension with the proposal that space-like stretched AdS3 solutions of TMG are

dual to a two-dimensional CFT. What we have seen is that in a three-dimensional theory

of gravity coupled to matter fields, one may be able to find a second Virasoro when the

gauge fiber is treated geometrically. This is similar in spirit to the study of an AdS2 back-

ground with gauge field [67], as well as to the proposed holographic description of extremal

Reissner-Norstrom black holes in [68].

5.2 Supersymmetry of the solutions

Here we will deal with the type IIA and heterotic cases; type IIB is similar to both this

section as well as to [39]. The metric is as in (5.1) with S3 radius
√
k whileH3 takes the form

H3 = 2cosh̺ sinh̺
(
kdt ∧ d̺ ∧ dφ− h

√
kd̺ ∧ dϕ ∧ (dφ+ σdt)

)
+ 2kVol(S3) , (5.11)

16Although, a second Virasoro algebra can be constructed out of a residual current algebra by means of

a Sugawara-like construction, e.g. [20]
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where Vol(S3) is the volume form on the unit 3-sphere and σ = ±1 determines whether we

deform the holomorphic or antiholomorphic side of the worldsheet CFT. In particular, in

a suitably chosen frame this is

H3 =
2√
k
et̂ ∧ e ˆ̺ ∧ eφ̂ + 2kVol(S3) . (5.12)

The Riemann tensors with ±1
2H3 torsion both vanish, so the integrability conditions on the

gravitini variations are always satisfied. This locally guarantees the existence of a solution

to the gravitini variations but not globally, as we will see. The dilatino variation constrains

the Killing spinor ε to satisfy the projection

Γt̂ ˆ̺φ̂α̂1α̂2α̂3ε = −ε , (5.13)

which poses no trouble.

We still have to solve for the Killing spinor which must satisfy ∇(β)
µ εβ = 0, where

∇(β)
µ refers to the connection with torsion 1

2βH3 and we have split ε into Majorana-Weyl

components, of which there are two for type IIA (β = ±) and only one for heterotic (β = −).

Since a solution is guaranteed locally, the only concern we have is whether the solution of

the Killing spinor equation respects the periodicity of the fibered circle. To check this, it

turns out that we only need to solve two of the components of the gravitino variation:

∇(β)
̺ εβ =

(
∂̺ −

β

2
Γt̂φ̂

)
εβ = 0 , (5.14a)

∇(β)
ϕ εβ =

(
∂ϕ − h

2
√
k
(1 + βσ)

(
sinh̺Γt̂ ˆ̺ + σ cosh̺Γφ̂ ˆ̺

))
εβ = 0 . (5.14b)

The first thing to notice is that when βσ = −1, (5.14b) implies that ε is independent of ϕ.

This will always yield a space-time supersymmetry: in the type IIA case, this means that

we will always have at least one globally defined Killing spinor, ε−σ ; in the heterotic case,

where β = −, this means that we will have a Killing spinor for all values of the moduli

when σ = 1, so this corresponds to deforming the bosonic side of the heterotic worldsheet.

On the other hand, when βσ = +1, the first equation (5.14a) is satisfied by

εβ =

(
cosh

̺

2
+ β sinh

̺

2
Γt̂φ̂

)
ηβ , (5.15)

which we can then use to simplify (5.14b):

(
cosh

̺

2
+ β sinh

̺

2
Γt̂φ̂

)(
∂ϕ − β

h√
k
Γφ̂ ˆ̺

)
ηβ = 0 . (5.16)

The solution to (5.16) will depend on cos
(

h√
k
ϕ
)
, and since our Killing spinors should be

periodic or antiperiodic around the fibered circle, this Killing spinor will only be globally

defined when
2hR√
k

∈ Z . (5.17)
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In the type IIA case, this means that half of undeformed supersymmetries will be broken

when (5.17) is satisfied, in which case we will have all the supersymmetry of the unde-

formed case. In the heterotic case, since we are fixed to have β = −, this means that the

deformation corresponding to σ = −1 will generically break all of supersymmetry except

when (5.17) holds, in which case it will break no supersymmetry and, hence, corresponds

to deforming the supersymmetric side of the heterotic worldsheet. This is in complete

agreement with the worldsheet analysis performed in section 4.1.

The type IIB theory differs from type IIA only in the GSO projection, so from the

worldsheet arguments of section 4.1 we expect the same conclusion to hold for type IIB.

This is in agreement with the Gödel space-time analysis of [39].

6 Discussion

As we have seen, when we consider space-time backgrounds that consist of an S1 bundle

over WAdS3, we find that we can tune the radius R of the S1 so that when 2hR√
k

takes

rational values µ
ρ , we obtain two commuting space-time Virasoro algebras with central

charges (taking, for instance, w > 0)

cst = 6k (ρw + µω) , c̄st = 6kw ,

whereas when it is irrational we obtain only one space-time Virasoro algebra together with

a commuting global charge, Lst
0 — in fact, the worldsheet theory contains both holomorphic

and antiholomorphic affine SL(2; R) current algebras at rational values of 2hR√
k

, though with

different levels when ρ 6= 1. Generically, half of space-time supersymmetry is broken in the

type II case and all of space-time supersymmetry is broken in the heterotic case (unless we

deform the bosonic side, in which case none is broken) except when 2hR√
k

is integer (e.g.,

ρ = 1), in which case no space-time supersymmetries are broken. Dual CFTs with differing

left and right central charges usually indicate a diffeomorphism-violating term in the bulk

lagrangian, so the cases where ρ 6= 1 are rather puzzling because these backgrounds arise as

solutions to a consistent truncation of supergravity that has no diffeomorphism-violating

terms (see section 2.1).

We can always realize the deformed worldsheet sigma model as a Z-orbifold of an

AdS3 × R WZW model with discrete torsion phases. It is tempting to conjecture that the

dual QFT is also an orbifold of the CFT dual to AdS3 ×R, e.g. by an operator of the form

exp
(
2πi2hR√

k
Lst

0

)
, but this appears to be incorrect in part because it does not reproduce the

term in the central charge related to winding around the S1, ω. Similarly, in searching for

the brane construction it would be tempting to guess that it is an orbifold of the full F1-

NS5 system, but this is also evidently untrue since the Z by which we orbifold is embedded

into a U(1) isometry of the near-horizon geometry that does not extend to an isometry of

the full geometry. It is also worth noting that the deformation away from the F1-NS5 near

horizon is achieved by turning on a three-dimensional gauge field (2.5) at lowest order in h

(the metric deformation is O(h2)). In Poincaré coordinates, the most singular component

of the gauge field behaves at the boundary u → 0 as 1
u , implying that this gauge field

sources a dimension (2, 1) operator in the dual theory (indeed, a worldsheet analysis using

the spacetime Virasoro generators of the undeformed theory (3.8) confirms this). This

– 25 –



J
H
E
P
0
1
(
2
0
1
1
)
0
3
0

operator explicitly breaks half of the Virasoro algebra, so it naively appears as though we

could study the dual to our WAdS3 background by studying this marginal deformation,

but life is not so simple: since the operator is irrelevant, the dual theory would correspond

to a UV fixed point of the deformed theory, but flowing up to the UV is generally not a

well-defined procedure — this is directly connected to the fact that our metric deformation

changes the asymptotics of the spacetime, implying that a naive expansion in small h is

rather dubious.17

Given these challenges, we leave the identifications of the dual QFT and the brane

construction for future work. Ultimately, our goal is to understand the QFTs dual to

space-like stretched WAdS3 and null WAdS3, which have black holes and no CTCs, but

this is currently beyond the scope of the methods used here (representations of ̂SL(2,R) in

the parabolic and hyperbolic basis are harder to handle). Until the day that we can extend

these methods to space-like WAdS3 arrives, we content ourselves with squeezing every drop

out of time-like WAdS3.
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A Parafermions and ̂SL(2, R)

Parafermions were originally studied by Zamolodchikov and Fateev in the context of the

two-dimensional Ising model by generalizing the Z2 symmetry to Zk [70]. As in the Z2

case, the Zk model is expected to have a critical point where the Zk symmetry is realized

and is described by fields φ(m,m̄) with Zk × Zk charge
(

1
2(m+ m̄), 1

2(m− m̄)
)
. When

k = 2, these fields are free fermions while in the general case, they are promoted to

parafermions ψm ∼ φ(m,0), ψ̄m̄ ∼ φ(0,m̄) — these describe the SU(2)/U(1) coset model.

The generalization to SL(2,R) was studied in [71] and the construction of primaries is

similar to that of SU(2), the main difference being that there is no known, underlying,

Ising-type model. The relevant OPEs of the holomorphic parafermions are

ψm(z)ψm′(z′) = cm,m′(z − z′)∆m+m′−∆m−∆m′

(
ψm′+m(z′) +O((z − z′))

)
,

ψm(z)ψ†
m(z′) = (z − z′)−2∆m

(
I +

2∆m

cp
Tp(z

′)(z − z′)2 +O((z − z′)3)

)
, (A.1)

17In the case of null WAdS3, a non-relativistic symmetry can be used to understand the dual [69].
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with the parafermion central charge given by

cp =
3k

k − 2
− 1 . (A.2)

The complete Fock space is constructed by acting with ψ1 and ψ†
1 on the parafermion

principal fields Φj
m [71]. So, the complete space of fields can be denoted

H =
n−1⊕

l=0

[
Φl,l̄

(l,l̄)

]
(A.3)

Where
[
Φl,l̄

(l,l̄)

]
correspond to the conformal block generated by all the descendants of Φl,l̄

(l,l̄)
.

A.1 Relation to ̂SL(2,R) WZW model

Consider a free time-like boson T (z, z̄) = T (z) + T̄ (z̄) with OPE T (z, z̄)T (0, 0) ∼ ln |z|2.
Then we can take the direct product the free boson and the Zk parafermion system in

order to write the ̂SL(2,R)k currents as

J+ = i
√
k ψ1 e

−i
q

2

k
T
(z) ,

J− = −i
√
k ψ†

1 e
i
q

2

k
T
(z) ,

J3 = i

√
k

2
∂T (z). (A.4)

The weights of the parafermionic currents are ∆(ψ1) = ∆(ψ†
1) = 1 + 1

k while the SL(2,R)

currents have OPEs

J3(z)J3(0) ∼ − k

2z2
, J+(z)J−(0) ∼ k

z2
− 2

J3(0)

z
, J3(z)J±(0) ∼ ±J

±(0)

z
, (A.5)

and similarly for the anti-holomorphic currents. The WZW primaries are then given by

V l,l̄
m,m̄ = Φl,l̄

(m,m̄)e
−i

q

2

k
mT−i

q

2

k
m̄T̄

. (A.6)

A.2 Free field representations

A free field representation for the SL(2,R) parefermions can be constructed in terms of two

free bosons (for the SU(2) case, see [72]), χ and s, which have the OPEs χ(z)χ(0) ∼ − ln(z),

s(z)s(0) ∼ − ln(z). Then we can write

ψ1(z) =
1√
2

(
∂χ+ i

√
k − 2

k
∂s

)
e
i
q

2

k
χ
,

ψ†
1(z) = − 1√

2

(
∂χ− i

√
k − 2

k
∂s

)
e
−i

q

2

k
χ
,

Tp(z) = −1

2
∂χ∂χ− 1

2
∂s∂s+

1√
2(k − 2)

∂2s . (A.7)
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In this representation, the parafermion principal fields are given by

Φj
m = e

i
q

2

k
mχ+j

q

2

k−2
s
, ∆(Φj

m) = −j(j − 1)

k − 2
+
m2

k
, (A.8)

and so we have

ψ1(z)Φ
j
m(w) ∼ (z − w)

2m
k

(
− i(m+ j)√

k(z − w)
Φj

m+1 +O(1)

)
,

ψ†
1(z)Φ

j
m(w) ∼ (z − w)−

2m
k

(
i(m− j)√
k(z − w)

Φj
m−1 +O(1)

)
. (A.9)

B Current-current deformations and lattice rotations

A WZW model is characterized by its left and right currents which each satisfy an affine

Kac-Moody algebra ĝk × ˆ̄gk. Generically, the Hilbert space will be decomposed as

H =
⊕

(Q,Q)∈Λ

HQ ⊗HQ (B.1)

where (Q,Q) are elements in the lattice of charges Λ. Λ is characterized by the eigen-

values of the generators of the Cartan subalgebra h × h̄ ⊆ ĝk × ˆ̄gk. It was shown in [57]

that a marginal deformation of the form cijJ
iJ

j
, with (J, J) ∈ h × h̄, can be implemented

by an O(d,d̄)
O(d)×O(d̄)×O(d,d̄;Z)

rotation on the charge lattice of the undeformed model. To im-

plement this, we write the WZW model as a coset model times a toroidal CFT with an

orbifold action: ĝk ≃
(
ĝk/ĥ ⊗ TΛ

)
/Γ. The deformed toroidal sigma model then has the

general form

S =
1

2πα′

∫
d2z (Gij + ∆Gij +Bij + ∆Bij)∂X

i∂̄Xj , (B.2)

with a constant metric G+ ∆G and B-field B+ ∆B that depend on the parameters of the

deformation through ∆G and ∆B. The fields are subject to the toroidal identifications

Xj ∼ Xj + 2πRj
i for all i, j = 1, . . . ,dim(h).

The dimensions of operators can be analyzed in the usual way. Calling the deformed

fields Ĝ and B̂, we can write the dimensions of operators in the deformed theory as

∆̂ =
α′

4
Ĝij p̂L,ip̂L,j and ˆ̄∆ =

α′

4
Ĝij p̂R,ip̂R,j (B.3)

where, as usual,

p̂L
R

,i = (R−1)jinj +
1

α′

(
B̂ij ± Ĝij

)
Rj

kw
k (B.4)

for ni, w
j ∈ Z. What was shown in [57] was that we can also write these dimensions as

∆̂ =
α′

4
Gijp′L,ip

′
L,j and ˆ̄∆ =

α′

4
Gijp′R,ip

′
R,j , (B.5)

where we contract with the undeformed metric G, the momenta p′L,R are determined by
(
p′L
p′R

)
= Ω

(
pL

pR

)
, Ω ∈ O(d, d̄)

O(d) ×O(d̄) ×O(d, d̄; Z)
, (B.6)

and pL,R are the momenta of the undeformed theory. Thus, we have a way of writing down

the spectrum of the deformed theory directly from that of the undeformed theory.
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C BRST formalism for coset models

One way to realize a level-k coset model (G/H)k, H ⊆ G, is as a product

(
Gk ×H−k−2h(H) × ghosts

)
/ ∼ , (C.1)

where the equivalence relation ∼ is defined by a suitable BRST operator and h(H) is the

dual Coxeter number of H [73, 74]. We can also realize the coset as a gauged WZW model,

and the bc ghost system here is precisely that which is required to gauge the subgroup

H ⊆ G. The ghost system has central charge −2dH , where dH = dim(H), so that the total

central charge is given by

cG/H = cG,k + cH,−k−2h(H) − 2dH =
k dG

k + h(G)
− k dH

k + h(H)
= cG,k − cH,k . (C.2)

The BRST operator is given by

QG/H =

dH∑

i=1

∮
dz

2πi
: ci
(
J i

G + Ĵ i
H +

1

2
J i

gh

)
: , (C.3)

where J i
gh ∼ if(H)ijk :bjc

k :. As usual, physical states are defined by the cohomology of

QG/H , HQG/H
(HG ⊗HH ⊗Hgh). Primary states are in the ghost vacuum — cin≥1|0〉gh =

0 = bin≥0|0〉gh — and, therefore, annihilated by
∮

:ciJ i
gh:. Thus, the physical state condition

for primary operators simply sets

(
J i

G + Ĵ i
H

)
|primary〉 = 0 . (C.4)

The extension to supersymmetric models is straightforward: (G/H)k is realized as(
Gk × H−k × superghosts

)
/ ∼, where the equivalence relation is now defined by a BRST

operator constructed out of the ‘total’ G and H currents J i ∼ J i + if i
jkψ

jψk, et cetera.

The ghost central charge in this case is −3dH so that the total central charge is

cG/H,k = cG,k + cH,−k − 3dH

=
(k + h(G)) dG

k
− (k + h(H)) dH

k
+

(dG − dH)

2
= cG,k − cH,k , (C.5)

as it should be.

D Space-time Virasoro from the BRST formalism

D.1 Undeformed case

Following appendix C, we realize SL(2,R)k/U(1) as
(
SL(2,R)k×U(1)×bc

)
/ ∼, where b has

weight 1, c has weight 0, and ∼ is defined through the BRST operator QG/H in (C.3). The

U(1) of the BRST formulation must have level opposite that of the U(1) of the coset. In

particular for the time-like deformation, the U(1) of the coset, generated byK = i
√

k
2 ∂T ,18

18This is not to be confused with the J3
G that will appear below, which is the J3

G of the SL(2, R) that

appears in the BRST formulation.
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has the level −k
2 so that the level of the U(1) in the BRST formulation must be +k

2 — let’s

denote this as ĴH = i
√

k
2 ∂Y , where Y is a space-like boson. Since H = U(1) is abelian,

Jgh = 0 and the BRST operator for the coset theory (not to be confused with the BRST

operator for the full worldsheet theory, which we’ll call QB) is simply

QG/H ≡
∮

dz

2πi
:c
(
J3

G + ĴH

)
: . (D.1)

A primary state in the BRST formulation is annihilated by cn>0, bn≥0, J
a
G,n>0, and ĴH,n>0.

Thus, a physical primary state must have equal and opposite eigenvalues of J3
G,0 and ĴH,0.

Just to be pedantic, we are writing the Hilbert H space of our original SL(2,R)k as

H
(
SL(2,R)k

) ∼= H
((

SL(2,R)/U(1)
)

k
× U(1)T

Z

)

∼= HQG/H

(
H
(

SL(2,R)k × U(1)Y × bc× U(1)T
Z

))
, (D.2)

where the Z acts to match the eigenvalue of J3
G,0 with that of K0 (in sectors with zero

spectral flow). Below, we’ll restrict to states with j = m̄ = 0 in order to work with

holomorphic operators, so we’ll suppress these subscripts for convenience and will write a

full SL(2,R) primary as VG
me

−i
q

2

k
m(t+φ)

, where VG
m refers to a primary of the SL(2,R) of

the BRST formulation.

Given a WZW primary state |m〉 which has L0 = 0, we can generate a state with

dimension 1 (and the same ghost number) by acting with c0b−1, J
a
G,−1, ĴH,−1, or K−1,

however up to a QG/H -exact piece, acting with J3
G,−1 is the same as acting with ĴH,−1

and so we will ignore it. Furthermore, c0b−1 will not lead to a QG/H-closed state because

{QG/H , c0b−1} ∼ c0
(
J3

G,−1 + ĴH,−1

)
, which cannot cancel with QG/H acting on the other

states. So, our most general guess for space-time Virasoro charges is

Lst
m =

∮
dz

2πi

{
ami

√
k

2
∂TVG

m + b+m : J+
GVG

m−1 :

+b−m : J−
GVG

m+1 : +cmi

√
k

2
∂Y VG

m

}
e
−i

q

2

k
m(T+Y )

. (D.3)

We have two constraints to impose: first, the state must be QG/H -closed; second, the

state must be QB-closed, which means it must be annihilated by L1. These imply the

two conditions

(m− 1)b+m − (m+ 1)b−m +
k

2
cm = 0 , (D.4)

m(am − cm) + (m− 1)b+m + (m+ 1)b−m = 0 . (D.5)

For reference, we include some relevant OPEs:

VG
m(z1)VG

n (z2) ∼ VG
m+n(z2) , (D.6a)

VG
m(z1) : J±

GVG
n : (z2) ∼ − m

z12
VG

m+n±1(z2) , (D.6b)
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: J±
GVG

n : (z1) : J±
GVG

m : (z2) ∼ − mn

(z12)2
VG

m+n±2(z2) −
mn

z12
: VG

m±1∂VG
n±1 : (z2)

+
(m− n)

z12
: J±

GVG
m+n±1 : (z2) , (D.6c)

: J±
GVG

n : (z1) : J∓
GVG

m : (z2) ∼ (k −mn± 2(n −m))

(z12)2
VG

m+n(z2)

+
1

z12

[
(k ± 2(n−m)) : VG

m∂VG
n :

−mn :VG
m±1∂VG

n∓1 :∓ 2:J3
GVG

m+n : −n :J±
GVG

m+n∓1 :

+m :J∓
GVG

m+n±1 :

]
(z2) . (D.6d)

Some of these can be simplified bit by noting that : ∂VG
m := m : VG

m−1∂VG
1 :, and we’ll

make use of this below. Define Lst
m ≡

∮
dz
2πiLm(z), then

∮

Cz2

dz1
2πi

Ln(z1)Lm(z2) ∼
{∑

s=±
bsnb

s
m

[(
mn+ 1 − s(m+ n)

)
in

√
2

k

(
∂Y + ∂T

)
VG

m+n

+(m− n) : Js
GVG

m+n−s : −
(
mn+ 1 − s(m+ n)

)
nVG

m+n−1∂VG
1

]

+
∑

s=±
bsnb

−s
m

[
−
(
k − 3 −mn+ s(n−m)

)
in

√
2

k

(
∂Y + ∂T

)
VG

m+n

+
(
nk − 3n−mn2 + sn(m+ n) − s(k − 2)

)
VG

m+n−1∂VG
1 − 2s : J3

GVG
m+n :

−(n− s) : Js
GVG

m+n−s : +(m+ s) : J−s
G VG

m+n+s :

]

+(an − cn)
∑

s=±
bsm

[
imn2

√
2

k

(
∂Y + ∂T

)
VG

m+n +m : Js
GVG

m+n−s :

−mn(n+ s)VG
m+n−1∂VG

1 − in

√
k

2
∂T VG

m+n

]

+(am − cm)
∑

s=±
bsn

[
imn2

√
2

k

(
∂Y + ∂T

)
VG

m+n − n : Js
GVG

m+n−s :

−mn(n− s)VG
m+n−1∂VG

1 + im

√
k

2
∂T VG

m+n

]

+(an − cn)(am − cm)

[(
− kn

2
−mn2

)
VG

m+n−1∂VG
1 + i

√
k

2

(
n∂Y +m∂T

)
VG

m+n

+imn2

√
2

k

(
∂Y + ∂T

)
VG

m+n

]

+(an − cn)cm

[
i

√
k

2
(m+ n)

(
∂Y + ∂T

)
VG

m+n − kn

2
VG

m+n−1∂VG
1

]
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+(am − cm)cn

[
− kn

2
VG

m+n−1∂VG
1

]

+
∑

s=±

(
mcmb

s
n − ncnb

s
m

)
i

√
k

2

(
∂Y + ∂T

)
VG

m+n

}
e
−i

q

2

k
(m+n)(Y +T )

(z2) . (D.7)

Collecting the coefficient of : Js
GVG

m+n−s : and demanding it equal (n−m)bsm+n in order it

satisfy the Virasoro algebra yields

(m−n)bsnb
s
m−(n−s)bsnb−s

m +(m−s)b−s
n bsm+m(an−cn)bsm−n(am−cm)bsn = (n−m)bsm+n . (D.8)

If we first restrict ourselves to cases where m,n 6= 0, and m+ n 6= 0, we can multiply this

equation by mn and simplify by using the physical state condition (D.4)

s(m+ n)
[
(m−n)bsnb

s
m+nbsnb

−s
m −mb−s

n bsm

]
= mn(n−m)bsm+n . (D.9)

We can solve this constraint by setting

bsm = −sm
2
. (D.10)

and input this into the physical state conditions (D.4) to find

am − cm = −1 and cm =
2m2

k
. (D.11)

Working with this solution drastically simplifies the OPE to

∮

Cz2

dz1
2πi

Ln(z1)Lm(z2) ∼
{∑

s=±
(n−m)bsn+m : Js

GVG
m+n−s :

+

(
mn

2

(
− nk

)
− kn

2
+mn2 + n3

)
VG

m+n−1∂VG
1

+

(
mn

2
(nk) +

k

2
n−m3 −m2n

)
i

√
2

k
∂Y VG

m+n

+

(
mn

2
(kn) +

k

2
m−m3 −m2n

)
i

√
2

k
∂T VG

m+n

}
e
−i

q

2

k
(m+n)(Y +T )

(z2) .

Now we deal with two cases separately. First if m+n 6= 0, then we can write Vm+n−1∂V1 =
1

m+n∂Vm+n. When we compute [Lst
m, L

st
n ], we will also integrate over z2 and can, therefore,

integrate by parts, which amounts to making the replacement

VG
m+n−1∂VG

1 −→ i

√
2

k
(∂Y + ∂T ) . (D.12)

In this case, we find

[Lst
n , L

st
m] = (n−m)

∮
dz

2πi

{∑

s=±
bsn+m : Js

GVG
m+n−s : +cn+mi

√
k

2
∂Y VG

m+n

+an+mi

√
k

2
∂T VG

m+n

}
e
−i

q

2

k
(m+n)(Y +T )

(z)

= (n−m)Ln+m , for m+ n 6= 0 . (D.13)
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On the other hand, if m = −n, then

[Lst
n , L

st
−n] =

∮
dz

2πi

[
k

2
(n3 − n)VG

−1∂VG
1 − (n3 − n)i

√
k

2
∂Y − (n3 + n)i

√
k

2
∂T

]
(z)

= 2nL0 + (n3 − n)

∮
dz

2πi

[
k

2
VG
−1∂VG

1 − i

√
k

2

(
∂Y + ∂T

)]
(z) . (D.14)

Thus, we recover the Virasoro algebra with central term:

[Lst
n , L

st
m] = (n−m)Lst

n+m +
kp̂

2
(n3 − n)δn+m,0 (D.15)

where we have defined

p̂ ≡
∮

dz

2πi

(
∂ lnVG

1 − i

√
2

k

(
∂Y + ∂T

))
. (D.16)

Thus, the operators

Lst
m =

∮
dz

2πi

{(
m2 − k

2

)
i

√
2

k
∂T VG

m − m

2
: J+

GVG
m−1 :

+
m

2
: J−

GVG
m+1 : +im2

√
2

k
∂Y VG

m

}
e
−i

q

2

k
m(T+Y )

(D.17)

form a space-time Virasoro algebra with central charge cst = 6kp̂.

D.2 Deformed model

As we learned in section 3.2, the deformed case is not much different from the unde-

formed case if we perform a lattice rotation as described in appendix B. In fact, all we

have to do is take the undeformed charges (D.17), make the replacement (T,ϕ) → (T̃ , ϕ̃)

(defined in (3.23)), and check the invariance under the identification (T̃ , ϕ̃) ≡ (T̃ , ϕ̃) +

2πR(tanα, secα). The deformed operators will only be invariant under the identification if

√
2

k
mR tanα ∈ Z , (D.18)

which is the same condition that we’ve discussed around (3.20). Thus, these operators are

only allowed when √
2

k
R tanα ≡ µ

ρ
∈ Q , m ∈ ρZ , (D.19)

for relatively prime µ, ρ ∈ Z. Thus, when (3.20) holds, we have the operators

L̂st
n =

kp̂

4

(
ρ− 1

ρ

)
δn,0 +

1

ρ

∮
dz

2πi

{(
ρ2n2 − k

2

)
i

√
2

k
∂T̃ VG

ρn − ρn

2
: J+

GVG
ρn−1 :

+
ρn

2
: J−

GVG
ρn+1 : +iρ2n2

√
2

k
∂Y VG

ρn

}
e
−i

q

2

k
ρn(T̃+Y )

.

(D.20)
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When (3.20) fails to hold, we still have the operator L̂st
0 .

When (3.20) holds, we also have a space-time Û(1) generator

J st
nρ =

∮
dz

2πi
∂ϕ̃Vnρe

−i
q

2

k
nρ(T̃+Y )

. (D.21)

When it fails to hold, we still have J st
0 .

E Computation of surface charges

This appendix reviews the formalism of [75–77] which we use to compute asymptotically

conserved charges for our ten-dimensional theory (2.1) (see also [78] and appendix A of [79]).

Our D-dimensional theory takes the generic form

I =
1

16πG

∫ (
R ⋆ 1l − 1

2
⋆ dχ ∧ dχ− 1

2
eα.χ ⋆H ∧H

)
, (E.1)

where χ is a scalar field and H is a three-form field strength. We will denote the set of fields

by φ = (g,B, χ), where B is a two-form potential for H. Associated to every asymptotic

Killing vector ξ,19 there is a space-time D − 2 form

kξ[δφ;φ] (E.2)

that is linear in δφ and its derivatives — it is a one-form in ‘field space’. kξ[δφ;φ], which can

be constructed by a well-defined algorithm that depends only on the equations of motion, is

the basic ingredient in the definition of asymptotically conserved charges [75–77] (a similar

expression exists for any gauge symmetry parameter of the theory). It enjoys the following

properties:

• Given a solution to the equations of motion, φ̃, and a variation δφ that satisfies the

linearized equations of motion around φ = φ̃, then for every exact Killing vector ξ of

the background φ̃, there exists a conserved quantity

δQξ ≡
∮

S
kξ[δφ; φ̃] (E.3)

that only depend on the homology class of the (D − 2)-surface S. δQξ defines the

difference in charge between the backgrounds φ̃ and φ̃+ δφ and is unique [80].

• When ξ is an asymptotic Killing vector, the difference in charge between the solutions

φ̃ and φ̃+ δφ is given by

δQξ ≡ lim
r→∞

∮

Sr

kξ[δφ; φ̃] . (E.4)

• Since kξ[δφ; φ̃] is constructed purely of the equations of motion and solutions φ̃ and

φ̃+ δφ, it does not depend on boundary terms in the action.

19Asymptotic Killing vectors are defined as diffeomorphisms that satisfy the Killing equations in an

asymptotic region and are associated with finite, conserved, and integrable charges.
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• Since kξ[δφ;φ] is a linear functional of the equations of motion, it can be expressed

as a sum of terms arising from each contribution to the Lagrangian.

• Given two solutions, φ̄ and φ̃, in the same phase space, for each asymptotic Killing

vector ξ, the difference in charge between φ̄ and φ̃ is given by

Qξ[φ̃, φ̄] ≡ lim
r→∞

∮

Sr

∫

γ
kξ[δφ

′, φ′] +Nξ[φ̄] , (E.5)

where γ is a path in field space connecting φ̄ with φ̃, δφ and its derivatives are a

basis for the line element along γ, and Nξ[φ̄] is an arbitrary normalization constant.

Demanding that the charge be independent of the path γ implies an integrability

condition that restricts the field space of φ as well as the space of asymptotic Killing

vectors.

Additional properties of the charge form (E.2) are discussed in [81, 82].

For the Lagrangian (E.1), the contributions to the (D− 2)-form can be split into four

pieces:

kξ[δφ;φ] = kg
ξ [δg; g] + eαχkB

ξ [δφ;φ] + kχ
ξ [δφ;φ] + kB suppl

ξ [δφ;φ] . (E.6)

The gravitational contribution to the charge form is given by [75, 83]

kg
ξ [δg; g] = −δQg

ξ − iξΘ
g[δg] − Eg

L[Lξg, δg] , (E.7)

where

Qg
ξ = ⋆

(1

2
(Dµξν −Dνξµ)dxµ ∧ dxν

)
, (E.8a)

Θg[δg] = ⋆
(
(Dσδgµσ − gαβDµδgαβ) dxµ

)
, (E.8b)

Eg
L[δ2g, δ1g] = ⋆

(1

2
δ1gµαg

αβδ2gβνdx
µ ∧ dxν

)
. (E.8c)

The term (E.8a) is known as the Komar (D − 2)-form while Eg
L, which does not appear

in the Iyer-Wald formalism [84], vanishes for exact Killing vectors but may be relevant for

asymptotic symmetries. In (E.7) above and (E.9) below, δ is an operator that acts only

on the fields φ, not on the asymptotic Killing vectors ξ. The p-form contribution to the

charge form (here p = 2) is given by [85]

kB

ξ [δφ;φ] = −δQB

ξ + iξΘB − EB

L [LξB, δB] , (E.9)

where

QB

ξ = iξB ∧ ⋆H , ΘB = δB ∧ ⋆H , (E.10)

EB

L [δ2B, δ1B] = ⋆

(
1

2

1

(p− 1)!
δ1Bµα1···αp−1

δ2B
α1···αp−1

ν dxµ ∧ dxν

)
. (E.11)

Finally, the last two terms are given by

kχ
ξ [δφ;φ] = iξ

(
⋆ (dχδχ)

)
, (E.12)

kB suppl
ξ [δφ;φ] = α δχ e−α.χQB

ξ . (E.13)

– 35 –



J
H
E
P
0
1
(
2
0
1
1
)
0
3
0

The next step is the representation of the algebra of asymptotic Killing vectors by the

asymptotically conserved charges (E.5). For this, we need to define a set of fields (φ, δφ)

(the phase space of the theory) and gauge parameters ξ (the asymptotic symmetries) such

that the charges Qξ[φ, φ̄] are all finite, asymptotically conserved, and integrable for all φ

and φ̄ in the phase space. One can then show (modulo a technical assumption) that for

any solutions φ and φ̄ in the phase space, and for any asymptotic symmetries ξ, ξ′, λ′, the

Dirac bracket defined by

{
Qξ[φ, φ̄], Qξ′ [φ, φ̄]

}
≡
∮

S∞
kξ[Lξ′φ, ;φ] (E.14)

can be written as

{
Qξ[φ, φ̄], Qξ′ [φ, φ̄]

}
= Q[ξ,ξ′][φ, φ̄] −N[ξ,ξ′][φ̄] +Kξ,ξ′ [φ̄] , (E.15)

where

Kξ,ξ′[φ̄] =

∮

S∞
kξ[Lξ′ φ̄; φ̄] (E.16)

is a central extension that is nontrivial only if it cannot be reabsorbed into the normalization

N[ξ,ξ′][φ̄]. An important observation is that the central term can be computed from the

data of a background only, independent from the definition of a phase space (and when

the phase space is known, the result is independent of the choice of a background in the

phase space).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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spacetimes, JHEP 03 (2007) 098 [hep-th/0701039] [SPIRES].

[67] T. Hartman and A. Strominger, Central charge for AdS2 quantum gravity,

JHEP 04 (2009) 026 [arXiv:0803.3621] [SPIRES].

[68] T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT duals for extreme black holes,

JHEP 04 (2009) 019 [arXiv:0811.4393] [SPIRES].

– 39 –

http://dx.doi.org/10.1063/1.1377273
http://arxiv.org/abs/hep-th/0001053
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0001053
http://dx.doi.org/10.1063/1.1377039
http://arxiv.org/abs/hep-th/0005183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005183
http://dx.doi.org/10.1103/PhysRevD.65.106006
http://arxiv.org/abs/hep-th/0111180
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0111180
http://dx.doi.org/10.1016/S0550-3213(02)00021-4
http://arxiv.org/abs/hep-th/0110252
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0110252
http://dx.doi.org/10.1103/PhysRevD.77.026010
http://arxiv.org/abs/0706.0663
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.0663
http://dx.doi.org/10.1088/1126-6708/2009/04/134
http://arxiv.org/abs/0901.3044
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.3044
http://dx.doi.org/10.1016/0550-3213(93)90511-M
http://arxiv.org/abs/hep-th/9301015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9301015
http://dx.doi.org/10.1016/0550-3213(94)90461-8
http://arxiv.org/abs/hep-th/9302083
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9302083
http://dx.doi.org/10.1088/1126-6708/2003/05/071
http://arxiv.org/abs/hep-th/0304234
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0304234
http://dx.doi.org/10.1103/PhysRevD.62.064028
http://arxiv.org/abs/hep-th/0003286
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0003286
http://dx.doi.org/10.1142/S0217751X97002334
http://arxiv.org/abs/hep-th/9610051
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9610051
http://dx.doi.org/10.1088/1126-6708/1998/12/005
http://arxiv.org/abs/hep-th/9804085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9804085
http://dx.doi.org/10.1088/1126-6708/2006/12/061
http://arxiv.org/abs/hep-th/0408172
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408172
http://dx.doi.org/10.1103/PhysRevD.73.044006
http://arxiv.org/abs/hep-th/0512105
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512105
http://dx.doi.org/10.1103/PhysRevLett.82.2030
http://arxiv.org/abs/hep-th/9811162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9811162
http://dx.doi.org/10.1088/1126-6708/2002/04/029
http://arxiv.org/abs/hep-th/0106171
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0106171
http://dx.doi.org/10.1088/1126-6708/2002/10/050
http://arxiv.org/abs/hep-th/0206175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206175
http://dx.doi.org/10.1088/1126-6708/2007/03/098
http://arxiv.org/abs/hep-th/0701039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701039
http://dx.doi.org/10.1088/1126-6708/2009/04/026
http://arxiv.org/abs/0803.3621
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.3621
http://dx.doi.org/10.1088/1126-6708/2009/04/019
http://arxiv.org/abs/0811.4393
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4393


J
H
E
P
0
1
(
2
0
1
1
)
0
3
0

[69] M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger

backgrounds, arXiv:1008.1991 [SPIRES].

[70] V.A. Fateev and A.B. Zamolodchikov, Parafermionic currents in the two-dimensional

conformal quantum field theory and selfdual critical points in Z(n) invariant statistical

systems, Sov. Phys. JETP 62 (1985) 215 [SPIRES].

[71] J.D. Lykken, Finitely reducible realizations of the N = 2 superconformal algebra,

Nucl. Phys. B 313 (1989) 473 [SPIRES].

[72] A. Gerasimov, A. Marshakov and A. Morozov, Free field representation of parafermions and

related coset models, Nucl. Phys. B 328 (1989) 664 [SPIRES].

[73] D. Karabali and H.J. Schnitzer, BRST quantization of the gauged WZW action and coset

conformal field theories, Nucl. Phys. B 329 (1990) 649 [SPIRES].

[74] S. Hwang and H. Rhedin, The BRST formulation of G/H WZNW models,

Nucl. Phys. B 406 (1993) 165 [hep-th/9305174] [SPIRES].

[75] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws

and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].

[76] G. Barnich, Boundary charges in gauge theories: using Stokes theorem in the bulk,

Class. Quant. Grav. 20 (2003) 3685 [hep-th/0301039] [SPIRES].

[77] G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic

integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [SPIRES].

[78] G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with

applications to the mechanics of black holes and to gravity in three dimensions,

arXiv:0708.3153 [SPIRES].

[79] G. Compere, S. de Buyl, S. Detournay and K. Yoshida, Asymptotic symmetries of

Schrödinger spacetimes, JHEP 10 (2009) 032 [arXiv:0908.1402] [SPIRES].

[80] G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the antifield formalism.

1. General theorems, Commun. Math. Phys. 174 (1995) 57 [hep-th/9405109] [SPIRES].

[81] G. Barnich and G. Compere, Generalized Smarr relation for Kerr AdS black holes from

improved surface integrals, Phys. Rev. D 71 (2005) 044016 [gr-qc/0412029] [SPIRES].

[82] G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null

infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130]

[SPIRES].

[83] L.F. Abbott and S. Deser, Stability of gravity with a cosmological constant,

Nucl. Phys. B 195 (1982) 76 [SPIRES].

[84] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

[85] G. Compere, Note on the first law with p-form potentials, Phys. Rev. D 75 (2007) 124020

[hep-th/0703004] [SPIRES].

– 40 –

http://arxiv.org/abs/1008.1991
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1008.1991
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA,62,215
http://dx.doi.org/10.1016/0550-3213(89)90329-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B313,473
http://dx.doi.org/10.1016/0550-3213(89)90224-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B328,664
http://dx.doi.org/10.1016/0550-3213(90)90075-O
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B329,649
http://dx.doi.org/10.1016/0550-3213(93)90165-L
http://arxiv.org/abs/hep-th/9305174
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9305174
http://dx.doi.org/10.1016/S0550-3213(02)00251-1
http://arxiv.org/abs/hep-th/0111246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0111246
http://dx.doi.org/10.1088/0264-9381/20/16/310
http://arxiv.org/abs/hep-th/0301039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0301039
http://dx.doi.org/10.1063/1.2889721
http://arxiv.org/abs/0708.2378
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2378
http://arxiv.org/abs/0708.3153
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.3153
http://dx.doi.org/10.1088/1126-6708/2009/10/032
http://arxiv.org/abs/0908.1402
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.1402
http://dx.doi.org/10.1007/BF02099464
http://arxiv.org/abs/hep-th/9405109
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9405109
http://dx.doi.org/10.1103/PhysRevD.71.044016
http://arxiv.org/abs/gr-qc/0412029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0412029
http://dx.doi.org/10.1088/0264-9381/24/5/F01
http://arxiv.org/abs/gr-qc/0610130
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/0610130
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B195,76
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=GR-QC/9403028
http://dx.doi.org/10.1103/PhysRevD.75.124020
http://arxiv.org/abs/hep-th/0703004
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703004

	Introduction and summary
	Warped AdS(3) as an exact string background
	Supergravity: 3d Kaluza-Klein reduction and solution
	Worldsheet CFT description: deformed WZW model
	Renormalization of the background fields

	Space-time symmetry algebra I: bosonic strings
	Lightning review of the Giveon-Kutasov-Seiberg construction
	Bosonic warped AdS(3)

	Space-time symmetry algebra II: heterotic and type II strings
	Space-time supersymmetry
	Heterotic strings with a gauge bundle

	Space-time symmetry algebra III: supergravity analysis
	Asymptotic bosonic symmetries
	Supersymmetry of the solutions

	Discussion
	Parafermions and hat-SL(2,R)
	Relation to hat-SL(2,R) WZW model
	Free field representations

	Current-current deformations and lattice rotations
	BRST formalism for coset models
	Space-time Virasoro from the BRST formalism
	Undeformed case
	Deformed model

	Computation of surface charges

