710 research outputs found
Mass and orbit constraints of the gamma-ray binary LS 5039
We present the results of space-based photometric and ground-based
spectroscopic observing campaigns on the gamma-ray binary LS 5039. The new
orbital and physical parameters of the system are similar to former results,
except we found a lower eccentricity. Our MOST-data show that any broad-band
optical photometric variability at the orbital period is below the 2 mmag
level. Light curve simulations support the lower value of eccentricity and
imply that the mass of the compact object is higher than 1.8 solar masses.Comment: 2 pages, 1 figure (with 2 panels); to be published in the
Proceedings: From Interacting Binaries to Exoplanets: Essential Modeling
Tools, IAU Symposium 282 (18-22 July, 2011, Tatranska Lomnica, Slovakia
Activity of 50 Long-Period Comets Beyond 5.2 AU
Remote investigations of the ancient solar system matter has been
traditionally carried out through the observations of long-period (LP) comets
that are less affected by solar irradiation than the short-period counterparts
orbiting much closer to the Sun. Here we summarize the results of our
decade-long survey of the distant activity of LP comets. We found that the most
important separation in the dataset is based on the dynamical nature of the
objects. Dynamically new comets are characterized by a higher level of activity
on average: the most active new comets in our sample can be characterized by
afrho values >3--4 higher than that of our most active returning comets. New
comets develop more symmetric comae, suggesting a generally isotropic outflow.
Contrary to this, the coma of recurrent comets can be less symmetrical,
ocassionally exhibiting negative slope parameters, suggesting sudden variations
in matter production. The morphological appearance of the observed comets is
rather diverse. A surprisingly large fraction of the comets have long, teniouos
tails, but the presence of impressive tails does not show a clear correlation
with the brightness of the comets.Comment: 21 pages, 4 figures, accepted for publication in A
Ferroplasmas: Magnetic Dust Dynamics in a Conducting Fluid
We consider a dusty plasma, in which the dust particles have a magnetic
dipole moment. A Hall-MHD type of model, generalized to account for the
intrinsic magnetization, is derived. The model is shown to be energy
conserving, and the energy density and flux is derived. The general dispersion
relation is then derived, and we show that kinetic Alfv\'en waves exhibit an
instability for a low temperature and high density plasma. We discuss the
implication of our results.Comment: 6 pages, 1 figur
Multi-wavelength study of the low-luminosity outbursting young star HBC 722
HBC 722 (V2493 Cyg) is a young eruptive star in outburst since 2010. It is an
FU Orionis-type object with an atypically low outburst luminosity. Because it
was well characterized in the pre-outburst phase, HBC 722 is one of the few
FUors where we can learn about the physical changes and processes associated
with the eruption. We monitored the source in the BVRIJHKs bands from the
ground, and at 3.6 and 4.5 m from space with the Spitzer Space Telescope.
We analyzed the light curves and the spectral energy distribution by fitting a
series of steady accretion disk models at many epochs. We also analyzed the
spectral properties of the source based on new optical and infrared spectra. We
also mapped HBC 722 and its surroundings at millimeter wavelengths. From the
light curve analysis we concluded that the first peak of the outburst in 2010
September was due to an abrupt increase of the accretion rate in the innermost
part of the system. This was followed by a long term process, when the
brightening was mainly due to a gradual increase of the accretion rate and the
emitting area. Our new observations show that the source is currently in a
constant plateau phase. We found that around the peak the continuum was bluer
and the H profile changed significantly between 2012 and 2013. The
source was not detected in the millimeter continuum, but we discovered a
flattened molecular gas structure with a diameter of 1700 au and mass of 0.3
M centered on HBC 722. While the first brightness peak could be
interpreted as a rapid fall of piled-up material from the inner disk onto the
star, the later monotonic flux rise suggests the outward expansion of a hot
component according to the theory of Bell & Lin (1994). Our study of HBC 722
demonstrated that accretion-related outbursts can occur in young stellar
objects even with very low mass disks, in the late Class II phase.Comment: 11 pages, 7 figures, 3 online tables. Accepted for publication in the
A&
On the stability of periodic orbits in delay equations with large delay
We prove a necessary and sufficient criterion for the exponential stability
of periodic solutions of delay differential equations with large delay. We show
that for sufficiently large delay the Floquet spectrum near criticality is
characterized by a set of curves, which we call asymptotic continuous spectrum,
that is independent on the delay.Comment: postprint versio
"TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects
Trans-Neptunian objects (TNO) represent the leftovers of the formation of the
Solar System. Their physical properties provide constraints to the models of
formation and evolution of the various dynamical classes of objects in the
outer Solar System. Based on a sample of 19 classical TNOs we determine
radiometric sizes, geometric albedos and beaming parameters. Our sample is
composed of both dynamically hot and cold classicals. We study the correlations
of diameter and albedo of these two subsamples with each other and with orbital
parameters, spectral slopes and colors. We have done three-band photometric
observations with Herschel/PACS and we use a consistent method for data
reduction and aperture photometry of this sample to obtain monochromatic flux
densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS
flux densities at 23.68 and 71.42 \mu m when available, and we present new
Spitzer flux densities of eight targets. We derive diameters and albedos with
the near-Earth asteroid thermal model (NEATM). As auxiliary data we use
reexamined absolute visual magnitudes from the literature and data bases, part
of which have been obtained by ground based programs in support of our Herschel
key program. We have determined for the first time radiometric sizes and
albedos of eight classical TNOs, and refined previous size and albedo estimates
or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347
Salacia indicate that they are among the 10 largest TNOs known. Our new results
confirm the recent findings that there are very diverse albedos among the
classical TNOs and that cold classicals possess a high average albedo (0.17 +/-
0.04). Diameters of classical TNOs strongly correlate with orbital inclination
in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and
Astrophysic
Unveiling new members in five nearby young moving groups
In the past decade many kinematic groups of young stars (<100 Myr) were discovered in the solar neighbourhood. Since the most interesting period of planet formation overlaps with the age of these groups, their well dated members are attractive targets for exoplanet searches by direct imaging. We combined astrometric, photometric and X-ray data, and applied strict selection criteria to explore the stellar content of five nearby moving groups. We identified more than 100 potential new candidate members in the beta Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations. In order to further assess and confirm their membership status, we analysed radial velocity data and lithium equivalent widths extracted from high-resolution spectra of 54 candidate stars. We identified 35 new probable/possible young moving group members: four in the beta Pic moving group, 11 in the Columba association, 16 in the Carina association and four in the Argus association. We found serendipitously a new AB Dor moving group member as well. For four Columba systems Hipparcos-based parallaxes have already been available and as they are consistent with the predicted kinematic parallaxes, they can be considered as secure new members
Extensive Spectroscopy and Photometry of the Type IIP Supernova 2013ej
We present extensive optical (, , and open CCD) and
near-infrared () photometry for the very nearby Type IIP SN ~2013ej
extending from +1 to +461 days after shock breakout, estimated to be MJD
. Substantial time series ultraviolet and optical spectroscopy
obtained from +8 to +135 days are also presented. Considering well-observed SNe
IIP from the literature, we derive bolometric calibrations from
and unfiltered measurements that potentially reach 2\% precision with a
color-dependent correction. We observe moderately strong Si II
as early as +8 days. The photospheric velocity () is
determined by modeling the spectra in the vicinity of Fe II
whenever observed, and interpolating at photometric epochs based on a
semianalytic method. This gives km s at +50
days. We also observe spectral homogeneity of ultraviolet spectra at +10--12
days for SNe IIP, while variations are evident a week after explosion. Using
the expanding photosphere method, from combined analysis of SN 2013ej and SN
2002ap, we estimate the distance to the host galaxy to be
Mpc, consistent with distance estimates from other methods. Photometric and
spectroscopic analysis during the plateau phase, which we estimated to be
days long, yields an explosion energy of
ergs, a final pre-explosion progenitor mass of ~M and a
radius of ~R. We observe a broken exponential profile beyond
+120 days, with a break point at + days. Measurements beyond this
break time yield a Ni mass of ~M.Comment: 29 pages, 23 figures, 15 tables, Published in The Astrophisical
Journa
- âŠ