1,650 research outputs found
Knowledge creation and management in the five LHC experiments at CERN: implications for technology innovation and transfer
The present study analyses knowledge creation, acquisition and transfer in the five LHC physics experiments at CERN: ALICE, ATLAS, CMS, LHCb, and TOTEM. A questionnaire was provided during collaboration meetings and a total of 291 replies were obtained and analysed. The results of this research study provide evidence that the social process of participation in meetings, acquisition of skills in different areas, and the development of interests by interaction with colleagues are key elements of the learning process. Furthermore, the results indicate that knowledge acquisition in a multicultural environment plays a mediating role in the interaction between social capital constructs (social interaction, relationship quality, and network ties) and competitive advantage outcomes (invention development and technological distinctiveness). Social interaction, relationship quality, and network ties are connected to greater knowledge acquisition, and also contribute to innovation and transfer of the knowledge to industry. The fertile environment of the five LHC experiments building and managing multiple processes, involves a dynamic, interactive,and simultaneous exchange of knowledge both inside and outside their organization
Competitiveness and communication for effective inoculation byRhizobium, Bradyrhizobium and vesicular-arbuscular mycorrhiza fungi
After a short summary on the ecology and rhizosphere biology of symbiotic bacteria and vesicular-arbuscular (VA) mycorrhiza fungi and their application as microbial inocula, results on competitiveness and communication are summarized. Stress factors such as high temperature, low soil pH, aluminium concentrations and phytoalexins produced by the host plants were studied withRhizobium leguminosarum bv.phaseoli andRhizobium tropici onPhaseolus beans. Quantitative data for competitiveness were obtained by usinggus + (glucoronidase) labelled strains, which produce blue-coloured nodules. ForPhaseolus-nodulating rhizobia, a group specific DNA probe was also developed, which did not hybridize with more than 20 other common soil and rhizosphere bacteria. Results from several laboratories contributing to knowledge of signal exchange and communication in theRhizobium/Bradyrhizobium legume system are summarized in a new scheme, including also defense reactions at the early stages of legume nodule initiation. Stimulating effects of flavonoids on germination and growth of VA mycorrhiza fungi were also found. A constitutive antifungal compound in pea roots, -isoxazolinonyl-alanine, was characterized
Progress in Multi-Disciplinary Data Life Cycle Management
Modern science is most often driven by data. Improvements in state-of-the-art technologies and methods in many scientific disciplines lead not only to increasing data rates, but also to the need to improve or even completely overhaul their data life cycle management.
Communities usually face two kinds of challenges: generic ones like federated authorization and authentication infrastructures and data preservation, and ones that are specific to their community and their respective data life cycle. In practice, the specific requirements often hinder the use of generic tools and methods.
The German Helmholtz Association project "Large-Scale Data Management and Analysis" (LSDMA) addresses both challenges: its five Data Life Cycle Labs (DLCLs) closely collaborate with communities in joint research and development to optimize the communities data life cycle management, while its Data Services Integration Team (DSIT) provides generic data tools and services.
We present most recent developments and results from the DLCLs covering communities ranging from heavy ion physics and photon science to high-throughput microscopy, and from DSIT
Genomic footprints of a biological invasion: Introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva)
Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non-native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non-native environments could be different from native ones for which introduced individuals would be ill-adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real-time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD-sequenced 301 specimens from sixteen populations and three distinct within-catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome-wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology
Magnetic susceptibility of EuTe/PbTe Heisenberg superlattices: experimental and theoretical studies
We report results on the temperature dependence of the susceptibilities of a
set of MBE-grown short-period EuTe/PbTe antiferromagnetic superlattices having
different EuTe layer thicknesses. In-plane and orthogonal susceptibilities have
been measured and display a strong anisotropy at low temperature, confirming
the occurrence of a magnetic phase transition in the thicker samples, as seen
also in neutron diffraction studies. We suggest that dipolar interactions
stabilize antiferromagnetic long-range order in an otherwise isotropic system
and we present numerical and analytical results for the low-temperature
orthogonal susceptibility.Comment: 30 pages, 8 ps figures, RevTe
An excess power statistic for detection of burst sources of gravitational radiation
We examine the properties of an excess power method to detect gravitational
waves in interferometric detector data. This method is designed to detect
short-duration (< 0.5 s) burst signals of unknown waveform, such as those from
supernovae or black hole mergers. If only the bursts' duration and frequency
band are known, the method is an optimal detection strategy in both Bayesian
and frequentist senses. It consists of summing the data power over the known
time interval and frequency band of the burst. If the detector noise is
stationary and Gaussian, this sum is distributed as a chi-squared (non-central
chi-squared) deviate in the absence (presence) of a signal. One can use these
distributions to compute frequentist detection thresholds for the measured
power. We derive the method from Bayesian analyses and show how to compute
Bayesian thresholds. More generically, when only upper and/or lower bounds on
the bursts duration and frequency band are known, one must search for excess
power in all concordant durations and bands. Two search schemes are presented
and their computational efficiencies are compared. We find that given
reasonable constraints on the effective duration and bandwidth of signals, the
excess power search can be performed on a single workstation. Furthermore, the
method can be almost as efficient as matched filtering when a large template
bank is required. Finally, we derive generalizations of the method to a network
of several interferometers under the assumption of Gaussian noise.Comment: 22 pages, 6 figure
Joint association of polymorphism of the FGFR4 gene and mutation TP53 gene with bladder cancer prognosis
The impact of the fibroblast growth factor receptor 4 (FGFR4) Gly388Arg polymorphism on bladder cancer is unknown. We found no clear correlations between the FGFR4 genotype and risk of bladder cancer or pathological parameters. Neither the polymorphism nor TP53 mutation status was an independent predictor of prognosis, but they might act jointly on the disease-specific survival of patients
- âŠ