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Abstract. After a short summary on the ecology and rhizosphere biology of symbiotic bacteria and vesicular-arbus- 
cular (VA) mycorrhiza fungi and their application as microbial inocula, results on competitiveness and communication 
are summarized. Stress factors such as high temperature, low soil pH, aluminium concentrations and phytoalexins 
produced by the host plants were studied with Rhizobium leguminosarum by. phaseoli and Rhizobium tropici on 
Phaseolus beans. Quantitative data for competitiveness were obtained by using gus + (glucoronidase) labelled strains, 
which produce blue-coloured nodules. For Phaseolus-nodulating rhizobia, a group specific DNA probe was also 
developed, which did not hybridize with more than 20 other common soil and rhizosphere bacteria. Results from 
several laboratories contributing to knowledge of signal exchange and communication in the Rhizobium/Bradyrhi- 
zobium legume system are summarized in a new scheme, including also defense reactions at the early stages of legume 
nodule initiation. Stimulating effects of flavonoids on germination and growth of VA mycorrhiza fungi were also 
found. A constitutive antifungal compound in pea roots, /~-isoxazolinonyl-alanine, was characterized. 
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fungi. 

Introduction 

The ecology of symbiotic microorganisms, and their use 
for inoculation of soils to increase the yield of crop 
plants by improving their nutrient supply, have recently 
been reviewed in references 1, 3, 4, 7, 18, 23, 31 and 43. 
The genetic basis and biochemical characters which 
control the competitiveness of single strains within one 
infection group of Rhizobium or Bradyrhizobium are not 
understood in detail. Often, very efficient nitrogen-fixing 
and nodulating laboratory strains are not competitive 
against endogenous strains of the same species under 
field conditions. On the other hand, there is an increas- 
ing understanding of the molecular interactions in- 
volved in symbiotic communication 6' ~0. In the following 
we will summarize and discuss new experimental data 
from our work to characterize competitiveness and 
communication in rhizobia, and some results with vesic- 
ular arbuscular (VA) mycorrhiza fungi. 

Competitiveness and stress factors 

In Phaseolus beans under field conditions, a response to 
inoculation with specific strains of Rhizobium Iegumi- 
nosarum bv. phaseoli, R. tropici or R. etli, which can all 
form nodules in these host plants, is more the exception 
than the rule 41. Studying the resistance of R. legumi- 
nosarum by. phaseoli and R. tropici strains towards 
different stress factors, it was evident that the most 
competitive strain (KIM5) was rather tolerant against 
high temperature and aluminium concentrations, but 

more sensitive than other strains to lower soil pH, and 
to tannins and phytoalexins produced by the host 
plants 45. The conclusion is that it is very difficult to 
combine the highest resistance against all relevant soil 
and stress factors into one competitive strain. Sensitivity 
of the Rhizobium strains towards tannins was greater at 
acidic pH 46. A large proportion of the arable land in the 
tropics has acidic soils. Soil pH there is a major factor 
limiting nodulation and nitrogen fixation in Phaseolus 
beans 4~. Co-inoculation with different strains at the 
same time proved not to be a successful strategy to 
overcome this problem, since the number of nodules 
formed by specific inoculant strains is affected by the 
competition of other strains ~1"37. 

Quantification of competitiveness: gus technology and 
gene probes 

To improve the methods for quantification of competi- 
tiveness a gus + (glucoronidase) strain of R. legumi- 
nosarum bv. phaseoIi KIM5s was constructed and used in 
competition experiments against 17 other strains of R. 
Ieguminosarum by. phaseoli and three strains of R. trop- 
ici. The results of these competition experiments at two 
pH levels (5.2 and 6.4) are summarized in table 1. The 
gus technology is very useful for direct identification of 
a single strain, because the nodules produced by the gus + 
strain are blue in colour, in contrast to the red or pink 
nodules produced by the other inoculant strains. For 
better visibility of the root system, including the nodules, 
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Table 1. Nodule occupancy in different Rhizobium leguminosarum 
by. phaseoli and Rhizobium tropici strains when coinoculated with 
the Rhizobiurn phaseoli strain KIM5s gus + 

Rhizobium spp. strain Nodule occupancy/KIM5s (%) 

pH 6.4 pH 5.2 

CIAT 2510 4 + 2 ND 
H2C 4 • 4 ND 
CIAT 323 9 _+ 5 10 -4- 3 
CFN 1500 ll • 11 67__+20* 
CE3 23 • 2 ND 
C-05-II 25 • 17 82 _ 20* 
CIAT 7004 30 __+ 4 23 • 8 
CIAT 899 41 _+4 76 __+ 18" 
CIAT 895 54 • 10 33 _ 10" 
Tal 182 68 •  72 __+ 15 
CIAT 652 79 _+ 4 73 _ 22 
Costa 6 79 _+ 11 ND 
CIAT 7014 82 • 7 67 ~ 12 
CFN 227 85 _+ 11 ND 
CIAT 151 89 _+ 10 90 __+ 10 
CIAT 904 91 + 4 86 ___ 4 
CIAT 163 91 • 8 95 • 5 
CIAT 956 93 _+ 6 93 • 6 
CFN 1600 94 + 8 86 __+ 13 
CIAT 611 96 _+ 4 96 + 2 

Means + SD of two replicates of five plants each. R. tropici strains 
are underlined. Assays were performed in growth pouches at two 
pH levels. *p < 0.05, versus nodule occupancy at pH 6.4. 
From: Streit et aL, Biol Fertil. Soils 14 (1992) 140-I44. 

so-called growth pouches made of  plastic material are 
used 39. With this technology, nodule occupancy be- 
tween 4% for the least competitive strain and up to 
96% for the most competitive strain could be observed 
(see table 1). The three strains of  R. tropici studied had 
a very low nodule occupancy at pH 6.4, but a much 
better competitiveness at pH 5.2. The competitiveness 
of  R. leguminosarum by. phaseoli strains was also 
affected by pH. The utilization of  43 different carbon 
sources by these strains was studied. Most of  the less 
competitive strains of  R. legurninosarum by. phaseoli 
were unable to metabolize ferulate or  coumarate, 
whereas, with a few exceptions, the highly competitive 
strains had those catalytic capacities 39. Growth of  R. 
legurninosarum bv. phaseoli and R. tropici strains on 
aromatic compounds was also shown z9,47, but no cor- 
relation between competitiveness and this capacity was 
demonstrated. 
To improve the rapid identification of  specific Rhizobium 
species and infection groups, D N A  probes were devel- 
oped, using the subtraction hybridization method 4~ This 
method was developed in the laboratory of  J. Cooper in 
Belfast, using subtraction hybridization and polymerase 
chain reaction amplification for the isolation of  strain- 
specific Rhizobium D N A  sequences 2. For the R. legumi- 
nosarum bv. phaseoli and Rhizobium tropici specific D N A  
probe, total DNA preparations from 8 different other 
Rhizobium species and soil bacteria were pooled and used 
as a subtracter D N A  against total genomic D N A  from 

the R. leguminosarum bv, phaseofi strain KIM5s. Only 
one round of  subtraction hybridization was necessary for 
removing all cross-hybridizing sequences. The specificity 
of  this D N A  probe is summarized in table 2. The probe 
hybridizes completely with all t 7 strains tested from the 
Phaseolus infection group and is negative against 34 
other soil bacteria such as Agrobacterium tumefaciens, 
Bacillus subtilis, Azotobacter vinelandii, Pseudornonas 
fluorescens, Pseudornonas putida, Xanthomonas campes- 
tris and various other Rhizobium and Bradyrhizobium 
species. This D N A  technology allows the rapid identifi- 
cation of  the R. legurninosarum by. phaseoli and R. 
tropici strains within a single day, whereas a 1 2 week 
test period is needed when plant inoculation is used. 
Requests from more than 30 different countries regard- 
ing this D N A  probe and probe technique indicate the 
usefulness of  this technology. With this D N A  probe, a 
soil titer as low as 3 x 104 homologous indigenous rhizo- 
bia per g soil could be detected 4~ 

Microsymbiont-legume host plant communication during 
the early stages of nodule initiation 

Contributions from a large number of  laboratories have 
made it evident that the signal exchange between mi- 
crosymbionts and host plants is much more detailed 
than simply the induction of  the nodulation genes (nod) 
by flavonoids (fig. 1). The patterns offlavonoids present 

Microsymbionts 

Chemotaxis (t5) 
Nod gene induction (9, 26) 
Nod factor production (6) 

Host plants 

Flavonoids from seed 
exudation (5) 

j~l~ Flavonoids from root 
exudation (27) 

~ Phytoalexine 
induction (35) 
Stimulation of flavonoid 

,~ t ,  production (36, 30) 
Root hair curling (38) 
Meristem induction (32) 

Phytoalexin resistance 
induction (24) V 
Phytoalexin degradation (8) 
C-ring cleavage of flavonoids (29) 
Utilization of aromatic 
compounds as C-sources (39) 

Lectins and ENOD 
~ k  functions in early nodule 

development (12) 
EPS and LPS functions for " ~  
infection and competition 
(14, 25, 28) 

Figure i, Microsymbiont-legume host plant communication during 
the early stages of nodule initiation, modified from Werner et al. 44. 
References are given in brackets. 
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Table 2. Cross hybridization of the developed DNA probe in dot Not hybridizations with total genomie DNA from different bacteria 

Bacteria Hybridizing with 

R. legummosarum biovar phaseoli KIM5s (3) 
R. legummosarum biovar phaseoli CIAT 7033 (2) 
R. legummosarum 
R. legummosarum 
R. legummosarum 
R. legummosarum 
R. legummosarum 
R. legummosarum 
R. legummosarum 
R. legummosarurn 
R tegurnmosarum 
R. legummosarum 
R [egummosarum 

biovar phaseoli CIAT 2510 (2) 
biovar phaseoli CIAT 904 (2) 
biovar phaseoli CIAT 895 (2) 
biovar phaseoli CIAT 652 (2) 
biovar phaseoli CIAT 613 (2) 
biovar phaseoli CIAT 611 (2) 
biovar phaseoli CIAT 323 (2) 
biovar phaseoli CIAT 163 (2) 
biovar phaseoli CIAT 141 (2) 
biovar phaseoli CFN 1600 (1) 
biovar phaseoli TAL 182(2) 

COSTA 6 (2) R. legummosarum biovar phaseoli 
R tropici CFN 1500 (1) 
R_ tropiei CIAT 899 (2) 
R. tropici C-O5-I1 (2) 
Agrobacterium rhizogenes DSM 30148 (6) 
Agrobacterium tumefaciens DSM 30150 (6) 
Agrobacterium tumefaciens C6-6 (5) 
Alcaligenes eutrophus DSM 517 (6) 
Ar~hrobacter globiformis (5) 
Azotobacter vinelandii DSM 43l (6) 
Bacillus subtilis DSM i970 (6) 
Citrobacter freundii DSM 30039T (6) 
E. coli K12 DSM 498 (6) 
Enterobacter agglomerans (5) 
Klebsiella pneumoniae K11 (new isolate) 
Pseudomonas stutzeri ATCC 14405 (6) 
Pseudomonas carboxydovorans O.M.5 (6) 
Pseudomonas fluorescens DSM 1694 (6) 
Pseudomonas facilis DSM 620 (6) 
Pseudomonas putida DSM 3226 (6) 
Paraeoccus denitrificans DSM 1404 (6) 
Proteus mirabilis DSM 4479T (6) 
Shevanella putrefaciens NCIMB 10471 (6) 
Xanthomonas campestris DSM 50859 (6) 
Rhizobium leguminosarum biovar trifolii K9 (5) 
Rhizobium Ieguminosarum biovar viciae F28 (4) 
Rhizobium leguminosarum biovar viciae 248 (4) 
Rhizobiumfredii HH 103 (7) 
Rhizobium meliloti 2011 (7) 
Rhizobium sp. (Robinia pseudoaeaeia) R I (5) 
Rhizobium sp. (Robinia pseudoacacia) R I I I  (5) 
Bradyrhizobium sp. (lupinus) USDA 3055 (8) 
Azorhizobium caulinodans ORS 57I 
Bradyrhizobium japonicum USDA 123 (8) 
Bradyrhizobium sp. (Pueraria phaseolide) CIAT 3918 (2) 
Bradyrhizobium sp. (Centrosema plumieri) CIAT 3101 (2) 
B~adyrhizobium sp, (Centrosema maerocarpum) CIAT 3111 (2) 
Bradyrhizobium sp. (Centrosema macrocarpum) CIAT 3011 (2) 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

crosshybridization; - no crosshybridization; 
Bacteria were obtained from: 1, Centro de Investigacion sobre Fijacion de Nitrogeno, Cuernavaca (Mexico); 2, Centro Internacional 
de Agriculture Tropical, Cali (Colombia); 3, Dr. J. Handelsman, Madison, Wisconsin (USA); 4, Prof. Dr. Lotz, Erlangen (Germany); 
5, Dr. M. R6hm, Marburg (Germany); 6, Deutsche Sammlung von Mikroorganismen, Braunschweig (Germany); 7, Dr. B. Bohlool, 
NigTal, Hawaii (USA); 8, US Dept. of Agriculture, Beltsville (USA). 
DNA from R. leguminosarum biovar phaseoli KIM5s was used as probe-DNA, subtracter strains are underlined. 
From: Streit et al, FEMS Microbiol. Ecol. 13 (1993) 59-68; Springer-Verlag, Berlin. 

in seeds 5 and  in roots  are very different in terms of 
qual i ty and  quant i ty  27. F lavonoids ,  or the precursor  
c innamic  acid, can have chemotact ic  activity is' 16. Induc-  

t ion of  nod and  nol genes is the centre of  interest  in a 
large n u m b e r  of publ ica t ions  (e.g. refs 9, 26). Nod factor 
p roduc t ion  6 leads to root  hair  curl ing 3s, act ivat ion of  cell 

cycle machinery  and  mer is tem induc t ion  32, and  also to a 

s t imula t ion  of  f lavonoid p roduc t ion  36. The microsym- 
b ionts  themselves induce phytoalexin  p roduc t ion  in the 
host  plants,  bu t  only dur ing  the first 6 to 12 hours  of  
inocula t ion  ~5. F lavonoids  can be enriched in the outer  
m e m b r a n e  of  R. meliloti; this is perhaps a protect ion 
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mechanism for the inner membrane 13. There are two 
strategies against phytoalexins in the host rhizosphere. 
Bradyrhizobium can react by an induced resistance 24 and 
R. legurninosarum with a phytoalexin degradation of  the 
phytoalexin wyerone s. C-ring cleavage of  flavonoids 29 is 
a strategy of  the microsymbionts to change the concen- 
tration of  signalling compounds. More competitive 
strains of R. leguminosarum by. phaseoli have also been 
shown to utilize different aromatic compounds as car- 
bon sources to a larger extent than less competitive 
strains 39. Not  much is known about how lectins and 
early nodulines produced by the host plants 12 are 
affected by microsymbiont strains with different com- 
petitiveness. Exopolysaccharides (EPS) and lipopol- 
saccharides (LPS) also have important functions for 
infection and competition; however, again the strategies 
in Bradyrhizobium and Rhizobium appear to be differ- 
ent ]4"2s'28. There are many variations from a generalized 
scheme such as that in figure 1. For  example, in alfalfa, 
betaines such as trigonellin and stachydrin also have a 
gene-inducing activity, though at a much higher concen- 
tration than most flavonoids 27. Cyclic glucans, which 
can make up between 5 and 20% of the dry weight of  
cells of  Bradyrhizobium japonicum 2~ may play an im- 
portant role in osmotic adaptation and thereby also in 
competition in the soil under varying water conditions. 

Flavonoids and VA mycorrhiza development 

Compared to our understanding of  the molecular mech- 
anisms of communication between Rhizobium, Brady- 
rhizobiurn and legume host plants, knowledge of  the VA 
mycorrhizal symbiosis is far behind. However, in princi- 
ple we can assume that there are some similar mecha- 
nisms, as indicated by the effect of  various flavonoids on 
spore germination and hyphal growth of  Glomus species 
(Kape et a1.17). Significant increase of  both growth 
parameters was observed by application of  myricetin and 
quercetin. Also, a 2- and 6-fold increase of  the phy- 
toalexin concentration in roots of  Vicia faba infected 
with mycorrhiza ( G. aggregatum, G. macrocarpum and G. 
mosseae) was found in different host cultivars, compared 
to uninfected plants 17. This confirms previous results by 
Morandi 21 and Morandi et al. 22 with other host plants. 
However, a major result of  these data is that there is a 
large difference between a phytopathogenic interaction 
and a response to VA mycorrhiza, with the latter trigger- 
ing phytoalexin concentrations that are lower by two 
orders of  magnitude. 

Constitutive antifungal components in roots 

A major role in the competitiveness of  symbiotic micro- 
organisms and their communication with the host 

I 
CH2 ' CH C02H 

I 
NH2 

Species Strain Inhibition a 

Saccharomyces cerevisiae DSM 70449 (typestrain) + + 
Saecharomyces uvarum MUCL 27835 + + 
Saccharomyces exiguus MUCL 27835 + 
Candida utilis MUCL 30058 + + 
Candida lipolytica MUCL 29853 + + 
Kluyveromyees polysporus MUCL30238 + + 
Pichia membranaefaeiens MUCL 30004 + + 

Botrytis cinerea New isolate + + 
Pythium ultimum New isolate + + 

Rhodosporidium toruloides MUCL 30249 _ 
Leucosporidium scottii DSM 4636 _ 
Rhodotorula glutinis DSM 70398 _ 
Rhodotorula rubra DSM 70825 __ 

"+ +, Strong (inhibition zone 20 30 ram); +, moderate (inhibition zone 5-10 mm); - ,  not significant (inhibition zone < 1 mm) 

Figure 2. Structure of ]?-isoxazolinonyl-alanine (BIA) and susceptibility of fungi against this heterocyclic non-protein amino acid. 
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plants is related to induced componen t s  as described in 

the previous  paragraphs .  Moreove r ,  we should not  

ove r look  the impor tance  o f  const i tu t ive  componen t s  in 

the roots  o f  the hos t  plants  which may  affect invading  

microorganisms .  A b road  ant i fungal  act ivi ty o f  fi-isoxa- 

zol inonyl-a lanine ,  a non-pro te in  amino  acid f rom roots  

o f  pea  plants,  has been described 34 (fig. 2). This  com-  

p o u n d  inhibi ted a large n u m b e r  o f  fungi  such as Sac- 

charornyces species, Candida species, Kluyveromyces 

potysporus and Pichia membranaefaciens; however ,  it 

was ineffective against  a n u m b e r  o f  o ther  fungi  such as 

Rhodotoruta species and Leucosporidium species. This  

c o m p o u n d  also had  a significant an t imycot ic  effect 

against  phy topa thogen ic  fungi  such as Phythium ulti- 

mum, Botrytis cinerea and Rhizoctonia solani 33. The  

effect of  these c o m p o u n d s  against  V A  mycorrh iza l  in- 

fection has no t  been analyzed so far and deserves fur- 

ther  work~ 
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