64 research outputs found

    Ternary inorganic compounds containing carbon, nitrogen, and oxygen at high pressures

    Full text link
    Ternary C_{x}N_{y}O_{z} compounds are actively researched as novel high energy density and ultrahard materials. Although some synthesis work has been performed at ambient conditions, very little is known about the high pressure chemistry of of C_{x}N_{y}O_{z} compounds. In this work, first principles variable-composition evolutionary structure prediction calculations are performed with the goal of discovering novel mixed C_{x}N_{y}O_{z} materials at ambient and high pressure conditions. By systematically searching ternary variable composition crystalline materials, the full ternary phase diagram is constructed in the range of pressures from 0 to 100 GPa. The search finds the C_{2}N_{2}O crystal containing extended covalent network of C, N, and O atoms, having space group symmetry Cmc2_{1}, and stable above just 10 GPa. Several other novel metastable (CO)_{x}-(N)_{y} crystalline compounds discovered during the search, including two polymorphs of C_{2}NO_{2} and two polymorphs of C_{3}N_{2}O_{3} crystals are found to be energetically favorable compared to polymeric carbon monoxide (CO) and nitrogen. Predicted new compounds are characterized by their Raman spectra and equations of state

    Novel Potassium Polynitrides at High Pressures

    Full text link
    Polynitrogen compounds have attracted great interest due to their potential applications as high energy density materials. Most recently, a rich variety of alkali polynitrogens (R_{x}N_{y}; R=Li, Na, and Cs) have been predicted to be stable at high pressures and one of them, CsN_{5} has been recently synthesized. In this work, various potassium polynitrides are investigated using first-principles crystal structure search methods. Several novel molecular crystals consisting of N_{4} chains, N_{5} rings, and N_{6} rings stable at high pressures are discovered. In addition, an unusual nitrogen-rich metallic crystal with stoichiometry K_{2}N_{16} consisting of a planar two-dimensional extended network of nitrogen atoms arranged in fused eighteen atom rings is found to be stable above 70 GPa. An appreciable electron transfer from K to N atoms is responsible for the appearance of unexpected chemical bonding in these crystals. The thermodynamic stability and high pressure phase diagram is constructed. The electronic and vibrational properties of the layered polynitrogen K_{2}N_{16} compound are investigated, and the pressure-dependent IR-spectrum is obtained to assist in experimental discovery of this new high-nitrogen content material

    Pentazole and Ammonium Pentazolate: Crystalline Hydro-Nitrogens at High Pressure

    Full text link
    Two new crystalline compounds, pentazole (N_{5}H) and ammonium pentazolate (NH_{4})(N_{5}), both featuring cyclo-{\rm N_{5}^{-}} are discovered using first principles evolutionary search of the nitrogen-rich portion of the hydro-nitrogen binary phase diagram (N_{x}H_{y}, x\geqy) at high pressures. Both crystals consist of the pentazolate N_{5}^{-} anion and ammonium NH_{4}^{+} or hydrogen H^{+} cations. These two crystals are predicted to be thermodynamically stable at pressures above 30 GPa for (NH_{4})(N_{5}) and 50 GPa for pentazole N_{5}H. The chemical transformation of ammonium azide (NH_{4})(N_{3}) mixed with di-nitrogen (N_{2}) to ammonium pentazolate (NH_{4})(N_{5}) is predicted to become energetically favorable above 12.5 GPa. To assist in identification of newly synthesized compounds in future experiments, the Raman spectra of both crystals are calculated and mode assignments are made as a function of pressure up to 75 GPa

    Novel Rubidium Poly-Nitrogen Materials at High Pressure

    Full text link
    First-principles crystal structure search is performed to predict novel rubidium poly-nitrogen materials at high pressure by varying the stoichiometry, i. e. relative quantities of the constituent rubidium and nitrogen atoms. Three compounds of high nitrogen content, RbN_{5}, RbN_{2}, and Rb_{4}N_{6}, are discovered. Rubidium pentazolate (RbN5) becomes thermodynamically stable at pressures above \unit[30]{GPa}. The charge transfer from Rb to N atoms enables aromaticity in cyclo-N_{^{_{5}}}^{-} while increasing the ionic bonding in the crystal. Rubidium pentazolate can be synthesized by compressing rubidium azide (RbN3) and nitrogen (N2) precursors above \unit[9.42]{GPa}, and its experimental discovery is aided by calculating the Raman spectrum and identifying the features attributed to N_{^{_{5}}}^{-} modes. The two other interesting compounds, RbN2 containing infinitely-long single-bonded nitrogen chains, and Rb_{4}N_{6} consisting of single-bonded N_{6} hexazine rings, become thermodynamically stable at pressures exceeding \unit[60]{GPa}. In addition to the compounds with high nitrogen content, Rb_{3}N_{3}, a new compound with 1:1 RbN stoichiometry containing bent N_{3} azides is found to exist at high pressures

    Tin-selenium compounds at ambient and high pressures

    Full text link
    SnxSey crystalline compounds consisting of Sn and Se atoms of varying composition are systematically investigated at pressures from 0 to 100 GPa using the first-principles evolutionary crystal structure search method based on density functional theory (DFT). All known experimental phases of SnSe and SnSe2 are found without any prior input. A second order polymorphic phase transition from SnSe-Pnma phase to SnSe-Cmcm phase is predicted at 2.5 GPa. Initially being semiconducting, this phase becomes metallic at 7.3 GPa. Upon further increase of pressure up to 36.6 GPa, SnSe-Cmcm phase is transformed to CsCl-type SnSe-Pm3m phase, which remains stable at even higher pressures. A metallic compound with different stoichiometry, Sn3Se4-I43d, is found to be thermodynamically stable from 18 GPa to 70 GPa. Known semiconductor tin diselenide SnSe2-P3m1 phase is found to be thermodynamically stable from ambient pressure up to 18 GPa. Initially being semiconducting, it experiences metalization at pressures above 8 GPa

    High-Pressure Synthesis of a Pentazolate Salt

    Full text link
    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5-, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides a critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species

    Rapid West Nile Virus Antigen Detection

    Get PDF
    We compared the VecTest WNV antigen assay with standard methods of West Nile virus (WNV) detection in swabs from American Crows (Corvus brachyrhynchos) and House Sparrows (Passer domesticus). The VecTest detected WNV more frequently than the plaque assay and was comparable to a TaqMan reverse transcription–polymerase chain reaction

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
    corecore