18 research outputs found

    Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT

    Get PDF
    We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∌2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4

    No full text
    International audienceWe present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∌436\sim 436 sq.deg. of the sky. Our galaxy sample, which covers ∌4143\sim 4143 sq.deg., is divided into six redshift bins spanning the redshift range of 0.20<z<1.050.20<z<1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat \LCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S8â‰ĄÏƒ8(Ωm/0.3)0.5=0.75−0.05+0.04S_8\equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.75^{+0.04}_{-0.05}. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S8S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (<2σ< 2 \sigma) of statistical significance

    Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4

    Get PDF
    International audienceWe present a measurement of the cross-correlation between the MagLim galaxies selected from the Dark Energy Survey (DES) first three years of observations (Y3) and cosmic microwave background (CMB) lensing from the Atacama Cosmology Telescope (ACT) Data Release 4 (DR4), reconstructed over ∌436\sim 436 sq.deg. of the sky. Our galaxy sample, which covers ∌4143\sim 4143 sq.deg., is divided into six redshift bins spanning the redshift range of 0.20<z<1.050.20<z<1.05. We adopt a blinding procedure until passing all consistency and systematics tests. After imposing scale cuts for the cross-power spectrum measurement, we reject the null hypothesis of no correlation at 9.1σ. We constrain cosmological parameters from a joint analysis of galaxy and CMB lensing-galaxy power spectra considering a flat \LCDM model, marginalized over 23 astrophysical and systematic nuisance parameters. We find the clustering amplitude S8â‰ĄÏƒ8(Ωm/0.3)0.5=0.75−0.05+0.04S_8\equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.75^{+0.04}_{-0.05}. In addition, we constrain the linear growth of cosmic structure as a function of redshift. Our results are consistent with recent DES Y3 analyses and suggest a preference for a lower S8S_8 compared to results from measurements of CMB anisotropies by the Planck satellite, although at a mild level (<2σ< 2 \sigma) of statistical significance

    Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT

    No full text
    International audienceWe search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 10510^5 clusters with mass and redshift ranges 1013.7<M200m/M⊙<1015.510^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5} and 0.1<z<20.1 < z < 2, and the total sky coverage of the maps is ≈15,000  deg2\approx 15,000 \,\,{\rm deg}^2. We find a clear pressure deficit at R/R200m≈1.1R/R_{\rm 200m}\approx 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ6\sigma significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius

    Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT

    No full text
    International audienceWe search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 10510^5 clusters with mass and redshift ranges 1013.7<M200m/M⊙<1015.510^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5} and 0.1<z<20.1 < z < 2, and the total sky coverage of the maps is ≈15,000  deg2\approx 15,000 \,\,{\rm deg}^2. We find a clear pressure deficit at R/R200m≈1.1R/R_{\rm 200m}\approx 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ6\sigma significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius

    Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT & ACT

    No full text
    International audienceWe search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogs from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev-Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 10510^5 clusters with mass and redshift ranges 1013.7<M200m/M⊙<1015.510^{13.7} < M_{\rm 200m}/M_\odot < 10^{15.5} and 0.1<z<20.1 < z < 2, and the total sky coverage of the maps is ≈15,000  deg2\approx 15,000 \,\,{\rm deg}^2. We find a clear pressure deficit at R/R200m≈1.1R/R_{\rm 200m}\approx 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ6\sigma significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2-5 compared to predictions, and we discuss possible interpretations of this behavior. An oriented stacking of clusters -- where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogs -- shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius
    corecore