183 research outputs found

    The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth”

    Get PDF
    The inability to resolve the exact temporal relationship between two pivotal events in Earth history, the Paleoproterozoic Great Oxidation Event (GOE) and the first “snowball Earth” global glaciation, has precluded assessing causality between changing atmospheric composition and ancient climate change. Here we present temporally resolved quadruple sulfur isotope measurements (δ34S, ∆33S, and ∆36S) from the Paleoproterozoic Seidorechka and Polisarka Sedimentary Formations on the Fennoscandian Shield, northwest Russia, that address this issue. Sulfides in the former preserve evidence of mass-independent fractionation of sulfur isotopes (S-MIF) falling within uncertainty of the Archean reference array with a ∆36S/∆33S slope of −1.8 and have small negative ∆33S values, whereas in the latter mass-dependent fractionation of sulfur isotopes (S-MDF) is evident, with a ∆36S/∆33S slope of −8.8. These trends, combined with geochronological constraints, place the S-MIF/S-MDF transition, the key indicator of the GOE, between 2,501.5 ± 1.7 Ma and 2,434 ± 6.6 Ma. These are the tightest temporal and stratigraphic constraints yet for the S-MIF/S-MDF transition and show that its timing in Fennoscandia is consistent with the S-MIF/S-MDF transition in North America and South Africa. Further, the glacigenic part of the Polisarka Formation occurs 60 m above the sedimentary succession containing S-MDF signals. Hence, our findings confirm unambiguously that the S-MIF/S-MDF transition preceded the Paleoproterozoic snowball Earth. Resolution of this temporal relationship constrains cause-and-effect drivers of Earth’s oxygenation, specifically ruling out conceptual models in which global glaciation precedes or causes the evolution of oxygenic photosynthesis

    Exonephology : transmission spectra from a 3D simulated cloudy atmosphere of HD 209458b

    Get PDF
    S. Lines and J. Goyal are funded by and thankful to the Leverhulme Trust. N. J. Mayne is part funded by a Leverhulme Trust Research Project Grant. J. Manners and I. A. Boutle acknowledge the support of a Met Office Academic Partnership secondment. B. Drummond acknowledges funding from the European Research Council (ERC) under the European Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 336792. G. K. H. Lee acknowledges support from the Universities of Oxford and Bern through the Bernoulli fellowship program. A. L. Carter is funded by a Science and Technology Facilities Council (STFC) studentship.We present high-resolution transmission spectra, calculated directly from a 3D radiative hydrodynamic simulation that includes kinetic cloud formation, for HD 209458b. We find that the high opacity of our vertically extensive cloud deck, composed of a large number density of sub-μm particles, flattens the transmission spectrum and obscures spectral features identified in the observed data. We use the PANDEXO simulator to explore features of our HD 209458b spectrum which may be detectable with the James Webb Space Telescope. We determine that an 8-12μm absorption feature attributed to the mixed-composition, predominantly silicate cloud particles is a viable marker for the presence of cloud. Further calculations explore, and trends are identified with, variations in cloud opacity, composition heterogeneity, and artificially scaled gravitational settling on the transmission spectrum. Principally, by varying the upper extent of our cloud decks, rainout is identified to be a key process for the dynamical atmospheres of hot Jupiters and shown to dramatically alter the resulting spectrum. Our synthetic transmission spectra, obtained from the most complete, forward atmosphere simulations to date, allow us to explore the model's ability to conform with observations. Such comparisons can provide insight into the physical processes either missing or requiring improvement.Publisher PDFPeer reviewe

    So close, so different:characterization of the K2-36 planetary system with HARPS-N

    Get PDF
    A.C.C. acknowledges support from the Science & Technology Facilities Council (STFC) consolidated grant number ST/R000824/1. C.A.W. acknowledges support from the STFC grant ST/P000312/1. The HARPS-N project has been funded by the Prodex Program of the Swiss Space Office (SSO), the Harvard University Origins of Life Initiative (HUOLI), the Scottish Universities Physics Alliance (SUPA), the University of Geneva, the Smithsonian Astrophysical Observatory (SAO), and the Italian National Astrophysical Institute (INAF), the University of St Andrews, Queen’s University Belfast, and the University of Edinburgh. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under grant agreement number 313014 (ETAEARTH).Context. K2-36 is a K dwarf orbited by two small (Rb = 1.43 ± 0.08 R⊕ and Rc = 3.2 ± 0.3 R⊕), close-in (ab = 0.022 AU and ac = 0.054 AU) transiting planets discovered by the Kepler/K2 space observatory. They are representatives of two distinct families of small planets (Rp < 4 R⊕) recently emerged from the analysis of Kepler data, with likely a different structure, composition and evolutionary pathways. Aims. We revise the fundamental stellar parameters and the sizes of the planets, and provide the first measurement of their massesand bulk densities, which we use to infer their structure and composition. Methods. We observed K2-36 with the HARPS-N spectrograph over∼3.5 years, collecting 81 useful radial velocity measurements. The star is active, with evidence for increasing levels of magnetic activity during the observing time span. The radial velocity scatter is ∼17 m s−1 due to the stellar activity contribution, which is much larger than the semi-amplitudes of the planetary signals. We tested different methods for mitigating the stellar activity contribution to the radial velocity time variations and measuring the planet masses with good precision. Results. We found that K2-36 is likely a∼1 Gyr old system, and by treating the stellar activity through a Gaussian process regression, we measured the planet masses mb = 3.9 ± 1.1 M⊕ and mc = 7.8 ± 2.3 M⊕. The derived planet bulk densities ρb = 7.2+2.5−2.1 g cm−3 and ρc = 1.3+0.7-0.5 g cm−3 point out that K2-36 b has a rocky, Earth-like composition, and K2-36 c is a low-density sub-Neptune. Conclusions. Composed of two planets with similar orbital separations but different densities, K2-36 represents an optimal laboratory for testing the role of the atmospheric escape in driving the evolution of close-in, low-mass planets after ∼1 Gyr from their formation. Due to their similarities, we performed a preliminary comparative analysis between the systems K2-36 and Kepler-36, which we deem worthy of a more detailed investigation.PostprintPeer reviewe

    The HARPS search for southern extra-solar planets : XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions

    Get PDF
    We thank the Swiss National Science Foundation (SNSF) and the Geneva University for their continuous support to our planet search programs. This work has been in particular carried out in the frame of the National Centre for Competence in Research “PlanetS” supported by SNSF. X.D. is grateful to the Society in Science–The Branco Weiss Fellowship for its financial support. N.C.S. was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the research grant through national funds and by FEDER through COMPETE2020 by grants UID/FIS/04434/2013 & POCI-01-0145-FEDER-007672 and PTDC/FIS-AST/1526/2014 & POCI-01-0145-FEDER-016886, as well as through Investigador FCT contract nr. IF/00169/2012/CP0150/CT0002 funded by FCT and POPH/FSE (EC). P.F. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through InvestigadorFCT contracts of reference IF/00169/2012/CP0150/CT0002, respectively, and POPH/FSE (EC) by FEDER funding through the program “Programa Operacional de Factores de Competitividade - COMPETE”. P.F. further acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) in the form of an exploratory project of reference IF/01037/2013/CP1191/CT0001. A.C.C. acknowledges support from STFC consolidated grant ST/M001296/1.Context. We present radial-velocity measurements of eight stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). Data span more than ten years and highlight the long-term stability of the instrument. Aims. We search for potential planets orbiting HD 20003, HD 20781, HD 21693, HD 31527, HD 45184, HD 51608, HD 134060 and HD 136352 to increase the number of known planetary systems and thus better constrain exoplanet statistics. Methods. After a preliminary phase looking for signals using generalized Lomb-Scargle periodograms, we perform a careful analysis of all signals to separate bona-fide planets from signals induced by stellar activity and instrumental systematics. We finally secure the detection of all planets using the efficient MCMC available on the Data and Analysis Center for Exoplanets (DACE web-platform), using model comparison whenever necessary. Results. In total, we report the detection of twenty new super-Earth to Neptune-mass planets, with minimum masses ranging from 2 to 30 MEarth and periods ranging from 3 to 1300 days, in multiple systems with two to four planets. Adding CORALIE and HARPS measurements of HD20782 to the already published data, we also improve the characterization of the extremely eccentric Jupiter orbiting this visual companion of HD 20781.PostprintPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project : sample characterization

    Get PDF
    Y.S. acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant AST-1715579. P.H. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number 2017-05983. W.N.B. acknowledges support from NSF grant AST-1516784. C.J.G., W.N.B., and D.P.S. acknowledge support from NSF grant AST-1517113. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.We present a detailed characterization of the 849 broad-line quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. Our quasar sample covers a redshift range of 0.1 < z < 4.5 and is flux-limited to i PSF < 21.7 without any other cuts on quasar properties. The main sample characterization includes: (1) spectral measurements of the continuum and broad emission lines for individual objects from the coadded first-season spectroscopy in 2014, (2) identification of broad and narrow absorption lines in the spectra, and (3) optical variability properties for continuum and broad lines from multi-epoch spectroscopy. We provide improved systemic redshift estimates for all quasars and demonstrate the effects of the signal-to-noise ratio on the spectral measurements. We compile measured properties for all 849 quasars along with supplemental multi-wavelength data for subsets of our sample from other surveys. The SDSS-RM sample probes a diverse range in quasar properties and shows well-detected continuum and broad-line variability for many objects from first-season monitoring data. The compiled properties serve as the benchmark for follow-up work based on SDSS-RM data. The spectral fitting tools are made public along with this work.Publisher PDFPeer reviewe

    Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum

    Get PDF
    The time-variable velocity fields of solar-type stars limit the precision of radial-velocity determinations of their planets’ masses, obstructing detection of Earth twins. Since 2015 July, we have been monitoring disc-integrated sunlight in daytime using a purpose-built solar telescope and fibre feed to the HARPS-N stellar radial-velocity spectrometer. We present and analyse the solar radial-velocity measurements and cross-correlation function (CCF) parameters obtained in the first 3 yr of observation, interpreting them in the context of spatially resolved solar observations. We describe a Bayesian mixture-model approach to automated data-quality monitoring. We provide dynamical and daily differential-extinction corrections to place the radial velocities in the heliocentric reference frame, and the CCF shape parameters in the sidereal frame. We achieve a photon-noise-limited radial-velocity precision better than 0.43 m s−1 per 5-min observation. The day-to-day precision is limited by zero-point calibration uncertainty with an RMS scatter of about 0.4 m s−1. We find significant signals from granulation and solar activity. Within a day, granulation noise dominates, with an amplitude of about 0.4 m s−1 and an autocorrelation half-life of 15 min. On longer time-scales, activity dominates. Sunspot groups broaden the CCF as they cross the solar disc. Facular regions temporarily reduce the intrinsic asymmetry of the CCF. The radial-velocity increase that accompanies an active-region passage has a typical amplitude of 5 m s−1 and is correlated with the line asymmetry, but leads it by 3 d. Spectral line-shape variability thus shows promise as a proxy for recovering the true radial velocity.Publisher PDFPeer reviewe

    Reverberation mapping of optical emission lines in five active galaxies

    Get PDF
    For a video summarizing the main results, see https://www.youtube.com/watch?v=KaC-jPsIY0QWe present the first results from an optical reverberation mapping campaign executed in 2014 targeting the active galactic nuclei (AGNs) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-Hβ lags, we measure black hole masses for all five targets. We also obtain Hγ and He ii λ4686 lags for all objects except 3C 382. The He ii λ4686 lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100–300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.Publisher PDFPeer reviewe
    corecore