550 research outputs found

    Transcriptional outcomes (fates) in response to DNA damage

    Get PDF
    Various types of DNA damage interfere with key vital processes which use DNA as a template, like replication and transcription. Upon large amount of genotoxic impacts, transcription is over-activated and probably results in the activation of several DNA damage recognition processes. During transcrip-tion, numerous components of the transcription machinery may act as a platform to recruit repair proteins at break sites. In contrast to that, when DNA damage occurs at a transcribing unit, it leads to transcriptional block. This multistep process in-volves several kinases and the ubiquitin ligases like NEDD4 and CUL3 leading to proteasome dependent degradation of RNA polymerase II (RNAPII) which happens at the site of the damage. Finally, at the break site ddRNA (a new class of noncoding RNA) production could be observed by controlling the DDR activation at sites of DNA damage. Taken together these results support an uncharacterized function of RNAPII complexes which allow the rec-ognition of DNA damages and like this enhance cell survival following DNA damage. This work was supported by OTKA-PD [112118], and the János Bolyai Research Scholarship of the Hungarian Acad-emy of Sciences

    Mechanistic insights into the transcriptional arrest in the presence of Double Strand Breaks

    Get PDF
    Double-strand breaks (DSBs) occur frequently in the genome during genome replication or by DNA damaging agents. DNA lesions affect fundamental DNA-dependent nuclear processes, such as replication and transcription. We have developed an experimental system where DSBs are induced at coding regions of RNA polymerase II transcribing genes. We have started to study the kinetics of RNA polymerase II transcription inhibition in the presence of DNA breaks. We observed that induction of the break led to transcription inhibition and the restoration of transcription closely followed the dynamics of the repair of breaks. We confirmed by chromatinimmunoprecipitation that the break induction led to displacement of RNA polymerase II affecting both the elongation and the initiation of transcription. Our results show that this is dependent on one of the major kinase in DNA damage repair called DNAPKcs. We also investigated the downstream steps of RNA polymerase II removal and we claimed that it was a multistep process involving additional kinases and ubiquitin ligases NEDD4 and CUL3. At the last step of break dependent transcriptional silencing the RNA polymerase II is targeted for proteasome dependent degradation. These data demonstrate that the DNA damage repair complexes and proteasomal system have a synergistic and active role in transcriptional silencing during the DSB repair by removing the RNA pol II from the transcribing region. We show here that DNA lesions occurring at transcribed regions cause a transient repression until the lesion is repaired. This is probably a cell defense mechanism to avoid production of truncated or mutated transcripts in essential genes whose alterations in their gene expression would endanger cell viability. Understudying the role of DNAPKcs, in preventing RNA pol II bypassing a DSB might be a key in avoiding the production of mutated transcripts that could lead to cancerous phenotypes

    DNA end resection requires constitutive sumoylation of CtIP by CBX4

    Get PDF
    DNA breaks are complex DNA lesions that can be repaired by two alternative mechanisms: non-homologous end-joining and homologous recombination. The decision between them depends on the activation of the DNA resection machinery, which blocks non-homologous end-joining and stimulates recombination. On the other hand, post-translational modifications play a critical role in DNA repair. We have found that the SUMO E3 ligase CBX4 controls resection through the key factor CtIP. Indeed, CBX4 depletion impairs CtIP constitutive sumoylation and DNA end processing. Importantly, mutating lysine 896 in CtIP recapitulates the CBX4-depletion phenotype, blocks homologous recombination and increases genomic instability. Artificial fusion of CtIP and SUMO suppresses the effects of both the non-sumoylatable CtIP mutant and CBX4 depletion. Mechanistically, CtIP sumoylation is essential for its recruitment to damaged DNA. In summary, sumoylation of CtIP at lysine 896 defines a subpopulation of the protein that is involved in DNA resection and recombination

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Nuclear position dictates DNA repair pathway choice

    Get PDF
    Faithful DNA repair is essential to avoid chromosomal rearrangements and promote genome integrity. Nuclear organization has emerged as a key parameter in the formation of chromosomal translocations, yet little is known as to whether DNA repair can efficiently occur throughout the nucleus and whether it is affected by the location of the lesion. Here, we induce DNA double-strand breaks (DSBs) at different nuclear compartments and follow their fate. We demonstrate that DSBs induced at the nuclear membrane (but not at nuclear pores or nuclear interior) fail to rapidly activate the DNA damage response (DDR) and repair by homologous recombination (HR). Real-time and superresolution imaging reveal that DNA DSBs within lamina-associated domains do not migrate to more permissive environments for HR, like the nuclear pores or the nuclear interior, but instead are repaired in situ by alternative end-joining. Our results are consistent with a model in which nuclear position dictates the choice of DNA repair pathway, thus revealing a new level of regulation in DSB repair controlled by spatial organization of DNA within the nucleus

    WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks

    Get PDF
    DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ligase WWP2 associates with components of the DNA-PK and RNAPII complexes and is recruited to DSBs at RNAPII transcribed genes. In response to DSBs, WWP2 targets the RNAPII subunit RPB1 for K48-linked ubiquitylation, thereby driving DNA-PK- and proteasome-dependent eviction of RNAPII. The lack of WWP2 or expression of nonubiquitylatable RPB1 abrogates the binding of nonhomologous end joining (NHEJ) factors, including DNA-PK and XRCC4/DNA ligase IV, and impairs DSB repair. These findings suggest that WWP2 operates in a DNA-PK-dependent shutoff circuitry for RNAPII clearance that promotes DSB repair by protecting the NHEJ machinery from collision with the transcription machinery

    Lysosome-mediated processing of chromatin in senescence

    Get PDF
    Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression

    TIRR regulates 53BP1 by masking its histone methyl-lysine binding function

    Get PDF
    53BP1 is a multi-functional double-strand break (DSB) repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumors to PARP inhibitors. Central to all 53BP1 activities is its recruitment to DSBs via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, TIRR (Tudor Interacting Repair Regulator) that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, ATM phosphorylates 53BP1 and recruits RIF1 to dissociate the 53BP1–TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to DSBs. Depletion of TIRR destabilizes 53BP1 in the nuclear soluble fraction and also alters the DSB-induced protein complex centering 53BP1. These findings identify TIRR as a new factor that influences DSB repair utilizing a unique mechanism of masking the histone methyl-lysine binding function of 53BP1

    Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure

    Get PDF
    Pregnane X receptor (PXR), acting as a xenobiotic-activated transcription factor, regulates the hepatic metabolism of therapeutics as well as endobiotics such as steroid hormones. Given our finding that PXR activation by rifampicin (RIF) represses the estrogen sulfotransferase (SULT1E1) gene in human primary hepatocytes and hepatocellular carcinoma Huh7 cells, here we have investigated the molecular mechanism of this repression. First the PXR-responsive enhancer was delineated to a 100 bp sequence (−1000/−901), which contains three half sites that constitute the overlapping direct repeat 1 (DR1) and direct repeat 2 (DR2) motifs and two forkhead factor binding sites. siRNA knockdown, chromatin immunoprecipitation and chromatin conformation capture assays were employed to demonstrate that hepatocyte nuclear factor 4α (HNF4α) bound to the PXR-responsive enhancer, and activated the enhancer by looping its position close to the proximal promoter. Upon activation by RIF, PXR indirectly interacted with the enhancer, decreasing the interaction with HNF4α and dissolving the looped SULT1E1 promoter with deacetylation of histone 3. Removal of the DR sites from the enhancer hampers the ability of HNF4α to loop the promoter and that of PXR to repress the promoter activity. Thus, PXR represses human SULT1E1, possibly attenuating the inactivation of estrogen

    Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells

    Get PDF
    The response to DNA damage in vertebrate cells involves successive recruitment of DNA signalling and repair factors. We used light microscopy to monitor the genetic dependencies of such localization to a single, induced DNA double strand break (DSB) in vertebrate cells. We used an inducible version of the rare-cutting I-SceI endonuclease to cut a chromosomally integrated I-SceI site beside a Tet operator array that was visualized by binding a Tet repressor-GFP fusion. Formation of γ-H2AX foci at a single DSB was independent of ATM or Ku70. ATM-deficient cells showed normal kinetics of 53Bp1 recruitment to DSBs, but Rad51 localization was retarded. 53Bp1 and Rad51 foci formation at a single DSB was greatly reduced in H2AX-null DT40 cells. We also observed decreased inter-sister chromatid distances after DSB induction, suggesting that cohesin loading at DSBs causes elevated sister chromatid cohesion. Loss of ATM reduced DSB-induced cohesion, consistent with cohesin being an ATM target in the DSB response. These data show that the same genetic pathways control how cells respond to single DSBs and to multiple lesions induced by whole-cell DNA damage
    corecore