9 research outputs found

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    TESS delivers its first Earth-sized planet and a warm sub-Neptune

    Get PDF
    The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be 2.61−0.16+0.17^{+0.17}_{-0.16} R⊕R_{\oplus}, and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7−1.9+2.222.7^{+2.2}_{-1.9} M⊕M_{\oplus}. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 R⊕R_{\oplus} with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized (Rp=0.892−0.058+0.064R⊕R_p = 0.892^{+0.064}_{-0.058} R_{\oplus}) planet from TESS. The HD21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.Comment: Published in ApJ Letters; 5 figures, 1 tabl

    An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the <i>Transiting Exoplanet Survey Satellite</i> Full Frame Images

    Get PDF
    We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff = 5645 ± 50 K, a mass of M ⋆ = {1.128}-0.061+0.065 M ⊙, radius of R ⋆ = {1.777}-0.044+0.047 R ⊙, a surface gravity of log g ⋆ = {3.993}-0.028+0.027, and an age of {7.4}-1.5+1.6 {Gyr}. Its planetary companion (TOI-172 b) has a radius of R P = {0.965}-0.029+0.032 R J, a mass of M P = {5.42}-0.20+0.22 M J, and is on an eccentric orbit (e={0.3806}-0.0090+0.0093). TOI-172 b is one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution of similar systems

    The TESS Objects of Interest Catalog from the TESS Prime Mission

    Get PDF
    We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes

    TESS delivers its first Earth-sized planet and a warm sub-Neptune

    No full text
    © 2019. The American Astronomical Society. All rights reserved.. The future of exoplanet science is bright, as Transiting Exoplanet Survey Satellite (TESS) once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36 day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD 21749b to be R ⊕, and combined archival and follow-up precision radial velocity data put the mass of the planet at M ⊕. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 R ⊕ with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized () planet from TESS. The HD 21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.NASA Hubble Fellowship (grant no. HST-HF2-51372.001-A)NASA Hubble Fellowship (grant no. HST-HF2-51399.001-A

    TIC 278956474: Two Close Binaries in One Young Quadruple System Identified by TESS

    Get PDF
    We have identified a quadruple system with two close eclipsing binaries in Transiting Exoplanet Survey Satellite (TESS) data. The object is unresolved in Gaia and appears as a single source at parallax 1.08 ± 0.01 mas. Both binaries have observable primary and secondary eclipses and were monitored throughout TESS Cycle 1 (sectors 1-13), falling within the TESS Continuous Viewing Zone. In one eclipsing binary (P = 5.488 days), the smaller star is completely occluded by the larger star during the secondary eclipse; in the other (P = 5.674 days) both eclipses are grazing. Using these data, spectroscopy, speckle photometry, spectral energy distribution analysis, and evolutionary stellar tracks, we have constrained the masses and radii of the four stars in the two eclipsing binaries. The Li I equivalent width indicates an age of 10-50 Myr and, with an outer period of 858+7−5 days, our analysis indicates this is one of the most compact young 2 + 2 quadruple systems known

    The TESS Mission Target Selection Procedure

    No full text
    We describe the target selection procedure by which stars are selected for 2 minute and 20 s observations by TESS. We first list the technical requirements of the TESS instrument and ground systems processing that limit the total number of target slots. We then describe algorithms used by the TESS Payload Operation Center (POC) to merge candidate targets requested by the various TESS mission elements (the Target Selection Working Group, TESS Asteroseismic Science Consortium, and Guest Investigator office). Lastly, we summarize the properties of the observed TESS targets over the two-year primary TESS mission. We find that the POC target selection algorithm results in 2.1-3.4 times as many observed targets as target slots allocated for each mission element. We also find that the sky distribution of observed targets is different from the sky distributions of candidate targets due to technical constraints that require a relatively even distribution of targets across the TESS fields of view. We caution researchers exploring statistical analyses of TESS planet-host stars that the population of observed targets cannot be characterized by any simple set of criteria applied to the properties of the input Candidate Target Lists

    A Hot Saturn Orbiting an Oscillating Late Subgiant Discovered by TESS

    Get PDF
    © 2019. The American Astronomical Society. All rights reserved.. We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 ÎŒHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R∗ = 2.943 ± 0.064 Ro), mass (M∗ = 1.212 ± 0.074 Mo), and age (4.9 ± 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (Rp = 9.17 ± 0.33 R⊕) with an orbital period of ∌14.3 days, irradiance of F = 343 ± 24 F⊕, and moderate mass (Mp = 60.5 ± 5.7 M⊕) and density (ρp = 0.431 ± 0.062 g cm-3). The properties of HD 221416 b show that the host-star metallicity-planet mass correlation found in sub-Saturns (4-8 R⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∌15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore