1,199 research outputs found

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for a WZ resonance, in the fully leptonic final state (electrons or muons), is performed using 139 fb - 1 of data collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The results are interpreted in terms of a singly charged Higgs boson of the Georgi–Machacek model, produced by WZ fusion, and of a Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell–Yan process. No significant excess over the Standard Model prediction is observed and limits are set on the production cross-section times branching ratio as a function of the resonance mass for these processes

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF
    This paper presents a measurement of b-jet production in Pb+Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector at the LHC. The measurement uses 260 pb−1 of pp collisions collected in 2017 and 1.4 nb−1 of Pb+Pb collisions collected in 2018. In both collision systems, jets are reconstructed via the anti-kt algorithm. The b-jets are identified from a sample of jets containing muons from the semileptonic decay of b-quarks using template fits of the muon momentum relative to the jet axis. In pp collisions, b-jets are reconstructed for radius parameters R = 0.2 and R = 0.4, and only R = 0.2 jets are used in Pb+Pb collisions. For comparison, inclusive R = 0.2 jets are also measured using 1.7 nb−1 of Pb+Pb collisions collected in 2018 and the same pp collision data as the b-jet measurement. The nuclear modification factor, RAA, is calculated for both b-jets and inclusive jets with R = 0.2 over the transverse momentum range of 80–290 GeV. The nuclear modification factor for b-jets decreases from peripheral to central collisions. The ratio of the b-jet RAA to inclusive jet RAA is also presented and suggests that the RAA for b-jets is larger than that for inclusive jets in central Pb+Pb collisions. The measurements are compared with theoretical calculations and suggest a role for mass and colour-charge effects in partonic energy loss in heavy-ion collisions

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80μb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)μb and 9±6(stat)-2+2(syst)μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type

    A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    The standard model of particle physics1–4 describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles5–9. The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons—the carriers of the strong, electromagnetic and weak forces—are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (τ)) are well measured and indications of interactions with a second-generation particle (muons, μ) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model

    Author Correction: A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

    Get PDF
    In the version of this article initially published, the ATLAS Collaboration author names, affiliations and acknowledgements were omitted and have now been included in the HTML and PDF versions of the article

    Measurement of the total and differential Higgs boson production cross-sections at √s = 13 TeV with the ATLAS detector by combining the H → ZZ * → 4ℓ and H → γγ decay channels

    Get PDF
    The total and differential Higgs boson production cross-sections are measured through a combined statistical analysis of the H → ZZ * → 4ℓ and H → γγ decay channels. The results are based on a dataset of 139 fb −1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded by the ATLAS detector at the Large Hadron Collider. The measured total Higgs boson production cross-section is 55.5−3.8+4.0 pb, consistent with the Standard Model prediction of 55.6 ± 2.5 pb. All results from the two decay channels are compatible with each other, and their combination agrees with the Standard Model predictions. A combined statistical interpretation of the measured fiducial cross-sections as a function of the Higgs boson transverse momentum is performed in order to probe the Yukawa couplings to the bottom and charm quarks. A similar interpretation is performed by including also the constraints from the measurements of Higgs boson production in association with a W or Z boson in the H → bb¯ and cc¯ decay channels. [Figure not available: see fulltext.

    Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector

    Get PDF
    Abstract A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015–2018) data set of 139 fb −1 collected with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of s s \sqrt{s} = 13 TeV. Scalar leptoquarks with charge −(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e are considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation (e, μ, ν) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recent B-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models

    Measurement of the polarisation of W bosons produced in top-quark decays using dilepton events at root s=13 TeV with the ATLAS experiment

    Get PDF
    A measurement of the polarisation of WW bosons produced in top-quark decays is presented, using proton-proton collision data at a centre-of-mass energy of s=13\sqrt{s} = 13 TeV. The data were collected by the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 139 fb1^{-1}. The measurement is performed selecting ttˉt\bar{t} events decaying into final states with two charged leptons (electrons or muons) and at least two bb-tagged jets. The polarisation is extracted from the differential cross-section distribution of the cosθ\cos{\theta^{*}} variable, where θ\theta^{*} is the angle between the momentum direction of the charged lepton from the WW boson decay and the reversed momentum direction of the bb-quark from the top-quark decay, both calculated in the WW boson rest frame. Parton-level results, corrected for the detector acceptance and resolution, are presented for the cosθ\cos{\theta^{*}} angle. The measured fractions of longitudinal, left- and right-handed polarisation states are found to be f0=0.684±0.005(stat.)±0.014(syst.)f_{0} = 0.684 \pm 0.005\,\mathrm{(stat.)} \pm 0.014\,\mathrm{(syst.)}, fL=0.318±0.003(stat.)±0.008(syst.)f_{\mathrm{L}} = 0.318 \pm 0.003\,\mathrm{(stat.)} \pm 0.008\,\mathrm{(syst.)} and fR=0.002±0.002(stat.)±0.014(syst.)f_{\mathrm{R}} = -0.002 \pm 0.002\,\mathrm{(stat.)} \pm 0.014\,\mathrm{(syst.)}, in agreement with the Standard Model prediction

    Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at root s = 13 TeV

    Get PDF
    This letter documents a search for flavour-changing neutral currents (FCNCs), which are strongly sup-pressed in the Standard Model, in events with a photon and a top quark with the ATLAS detector. The analysis uses data collected in pp collisions at & RADIC;s =13 TeV during Run 2 of the LHC, corresponding to an integrated luminosity of 139 fb-1. Both FCNC top-quark production and decay are considered. The final state consists of a charged lepton, missing transverse momentum, a b-tagged jet, one high-momentum photon and possibly additional jets. A multiclass deep neural network is used to classify events either as signal in one of the two categories, FCNC production or decay, or as background. No significant ex-cess of events over the background prediction is observed and 95% CL upper limits are placed on the strength of left-and right-handed FCNC interactions. The 95% CL bounds on the branching fractions for the FCNC top-quark decays, estimated (expected) from both top-quark production and decay, are B(t & RARR; u & gamma; ) < 0.85 (0.88+0.37 -0.25) x 10-5 and B(t & RARR; c & gamma; ) < 4.2 (3.40+1.35-0.95) x 10-5 for a left-handed tq & gamma; cou-pling, and B(t & RARR; u & gamma; ) < 1.2 (1.20+0.50 -0.33) x10-5 and B(t & RARR; c & gamma; ) < 4.5 (3.70+1.47 -1.03) x10-5 for a right-handed coupling. & COPY; 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Measurement of the Z boson invisible width at s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the invisible width of the Z boson using events with jets and missing transverse momentum is presented using 37 fb−1 of 13 TeV proton–proton data collected by the ATLAS detector in 2015 and 2016. The ratio of Z→inv to Z→ll events, where inv refers to non-detected particles and l is either an electron or a muon, is measured and corrected for detector effects. Events with at least one energetic central jet with pT≥110 GeV are selected for both the Z→inv and Z→ll final states to obtain a similar phase space in the ratio. The invisible width is measured to be 506±2(stat.)±12(syst.) MeV and is the single most precise recoil-based measurement. The result is in agreement with the most precise determination from LEP and the Standard Model prediction based on three neutrino generations
    corecore