339 research outputs found

    Galaxy Zoo: constraining the origin of spiral arms

    Get PDF
    Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure, a number of theories have been proposed as to why these patterns exist. A popular explanation is a process known as swing amplification, yet there is no observational evidence to prove that such a mechanism is at play. By using a number of measured properties of galaxies, and scaling relations where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral galaxies at z 10^10 Msolar have spiral arms that can be modelled by swing amplification. This population display a significant correlation between predicted and observed spiral arm numbers, evidence that they are swing amplified modes. The remainder are dominated by two-arm systems for which the model predicts significantly higher arm numbers. These are likely driven by tidal interactions or other mechanisms

    Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by motor neuron loss, resulting in muscle wasting, paralysis and eventual death. A key pathological feature of ALS is cytoplasmically mislocalized and aggregated TDP-43 protein in >95% of cases, which is considered to have prion-like properties. Historical studies have predominantly focused on genetic forms of ALS, which represent ∼10% of cases, leaving the remaining 90% of sporadic ALS relatively understudied. Additionally, the role of astrocytes in ALS and their relationship with TDP-43 pathology is also not currently well understood. We have therefore used highly enriched human induced pluripotent stem cell (iPSC)-derived motor neurons and astrocytes to model early cell type-specific features of sporadic ALS. We first demonstrate seeded aggregation of TDP-43 by exposing human iPSC-derived motor neurons to serially passaged sporadic ALS post-mortem tissue (spALS) extracts. Next, we show that human iPSC-derived motor neurons are more vulnerable to TDP-43 aggregation and toxicity compared with their astrocyte counterparts. We demonstrate that these TDP-43 aggregates can more readily propagate from motor neurons into astrocytes in co-culture paradigms. We next found that astrocytes are neuroprotective to seeded aggregation within motor neurons by reducing (mislocalized) cytoplasmic TDP-43, TDP-43 aggregation and cell toxicity. Furthermore, we detected TDP-43 oligomers in these spALS spinal cord extracts, and as such demonstrated that highly purified recombinant TDP-43 oligomers can reproduce this observed cell-type specific toxicity, providing further support to a protein oligomer-mediated toxicity hypothesis in ALS. In summary, we have developed a human, clinically relevant, and cell-type specific modelling platform that recapitulates key aspects of sporadic ALS and uncovers both an initial neuroprotective role for astrocytes and the cell type-specific toxic effect of TDP-43 oligomers

    Hillslope and stream connectivity: simulation of concentration-discharge patterns using the HYDRUS model

    Get PDF
    Abstract: Nutrient concentrations and loads in streamflow are sensitive to rapidly changing stream chemistry and discharge during storms. Mechanistic models that can simulate water and solute movement at hillslope scales could be useful for predicting concentration-discharge (C-Q) patterns and thereby improve our quantitative understanding of terrestrial-aquatic linkages for targeted catchment management. Our objective was to use the HYDRUS model to represent hydro-biogeochemical processes in soils that drive seepage of water and solutes from soil profiles into streams. Specifically we compared measurements in the literature with HYDRUS outputs using two methods for simulating runoff. This model predicts runoff (R) as rainfall that is instantaneously in excess of infiltration, but it is not designed to route runoff as overland flow. Post-HYDRUS addition of seepage to runoff was used to simulate the delivery of dissolved or particulate constituents to a stream (method A). Alternatively, we demonstrated how simulations using HYDRUS could include a hypothetical layer at the top of the soil profile with extremely high porosity and hydraulic conductivity that enabled overland flow and down-slope infiltration, but in this case only dissolved constituents could be considered (method B). These methods were evaluated by comparing the simulated temporal patterns of discharge and concentration with observed patterns. The catchments considered were in Slovenia (4210 ha) and in Australia (11.9 ha). Methods A and B were shown to adequately simulate some aspects of published discharge-concentration patterns, e.g. runoff dilution or concentration effects, but the temporal patterns of discharge for both methods did not precisely match those measured at small time-steps (e.g. 15 minutes). This limitation was due mainly to inadequate simulation of the down-slope movement of runoff and down-slope infiltration of a portion of this runoff. Method A was generally more useful than method B. Despite this limitation, both methods, if used carefully, should be adequate for many purposes, especially when simulating longer time-steps. Additional hypothetical simulations illustrated the significance of soil hydraulic conductivity, soil water content, and vertical gradients in solute concentrations in soil. Two temporal types of dischargeconcentration patterns were observed; short-term hysteresis caused by runoff during and shortly after a rainfall event, and longer-term trends associated with infiltration and seepage. Clockwise and anti-clockwise hysteresis was demonstrated to be potentially due to the temporal asynchrony of peak discharge and peak concentration in runoff. Simulations also demonstrated advantages over using the more common approach of a 2-or 3-component mixing model. Our results suggest that the HYDRUS model will be useful for the mechanistic simulation of within-soil processes that are needed to predict discharge-concentration patterns at hillslope scales

    Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sersic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at z=0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z=1. Furthermore, given the low bar fractions at z>1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA

    In situ measurements of near-surface hydraulic conductivity in engineered clay slopes

    Get PDF
    In situ measurements of near-saturated hydraulic conductivity in fine grained soils have been made at six exemplar UK transport earthwork sites: three embankment and three cutting slopes. This paper reports 143 individual measurements and considers the factors that influence the spatial and temporal variability obtained. The test methods employed produce near-saturated conditions and flow under constant head. Full saturation is probably not achieved due to preferential and by-pass flow occurring in these desiccated soils. For an embankment, hydraulic conductivity was found to vary by five orders of magnitude in the slope near-surface (0 to 0.3 metres depth), decreasing by four orders of magnitude between 0.3 and 1.2 metres depth. This extremely high variability is in part due to seasonal temporal changes controlled by soil moisture content, which can account for up to 1.5 orders of magnitude of this variability. Measurements of hydraulic conductivity at a cutting also indicated a four orders of magnitude range of hydraulic conductivity for the near-surface, with strong depth dependency of a two orders of magnitude decrease from 0.2 to 0.6 metres depth. The main factor controlling the large range is found to be spatial variability in the soil macro structure generated by wetting/drying cycle driven desiccation and roots. The measurements of hydraulic conductivity reported in this paper were undertaken to inform and provide a benchmark for the hydraulic parameters used in numerical models of groundwater flow. This is an influential parameter in simulations incorporating the combined weather/vegetation/infiltration/soil interaction mechanisms that are required to assess the performance and deterioration of earthwork slopes in a changing climate

    EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2.

    Get PDF
    Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection

    Challenges in monitoring and managing engineered slopes in a changing climate

    Get PDF
    Geotechnical asset owners need to know which parts of their asset network are vulnerable to climate change induced failure in order to optimise future investment. Protecting these vulnerable slopes requires monitoring systems capable of identifying and alerting to asset operators changes in the internal conditions that precede failure. Current monitoring systems are heavily reliant on point sensors which can be difficult to interpret across slope scale. This paper presents challenges to producing such a system and research being carried out to address some of these using electrical resistance tomography (ERT). Experimental results show that whilst it is possible to measure soil water content indirectly via resistivity the relationship between resistivity and water content will change over time for a given slope. If geotechnical parameters such as pore water pressure are to be estimated using this method then ERT systems will require integrating with more conventional geotechnical instrumentation to ensure correct representative information is provided. The paper also presents examples of how such data can be processed and communicated to asset owners for the purposes of asset management

    Galaxy Zoo and SPARCFIRE: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles

    Get PDF
    In this paper, we study the morphological properties of spiral galaxies, including measurements of spiral arm number and pitch angle. Using Galaxy Zoo 2, a stellar mass-complete sample of 6222 SDSS spiral galaxies is selected. We use the machine vision algorithm sparcfire to identify spiral arm features and measure their associated geometries. A support vector machine classifier is employed to identify reliable spiral features, with which we are able to estimate pitch angles for half of our sample. We use these machine measurements to calibrate visual estimates of arm tightness, and hence estimate pitch angles for our entire sample. The properties of spiral arms are compared with respect to various galaxy properties. The star formation properties of galaxies vary significantly with arm number, but not pitch angle. We find that galaxies hosting strong bars have spiral arms substantially (4°-6°) looser than unbarred galaxies. Accounting for this, spiral arms associated with many-armed structures are looser (by 2°) than those in two-armed galaxies. In contrast to this average trend, galaxies with greater bulge-to-total stellar mass ratios display both fewer and looser spiral arms. This effect is primarily driven by the galaxy disc, such that galaxies with more massive discs contain more spiral arms with tighter pitch angles. This implies that galaxy central mass concentration is not the dominant cause of pitch angle and arm number variations between galaxies, which in turn suggests that not all spiral arms are governed by classical density waves or modal theories
    • …
    corecore