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ABSTRACT
Since the discovery that the majority of low-redshift galaxies exhibit some level of spiral structure,
a number of theories have been proposed as to why these patterns exist. A popular explanation is
a process known as swing amplification, yet there is no observational evidence to prove that such a
mechanism is at play. By using a number of measured properties of galaxies, and scaling relations
where there are no direct measurements, we model samples of SDSS and S4G spiral galaxies in terms
of their relative halo, bulge and disc mass and size. Using these models, we test predictions of swing
amplification theory with respect to directly measured spiral arm numbers from Galaxy Zoo 2. We
find that neither a universal cored or cuspy inner dark matter profile can correctly predict observed
numbers of arms in galaxies. However, by invoking a halo contraction/expansion model, a clear
bimodality in the spiral galaxy population emerges. Approximately 40 per cent of unbarred spiral
galaxies at z . 0.1 and M∗ & 1010M� have spiral arms that can be modelled by swing amplification.
This population display a significant correlation between predicted and observed spiral arm numbers,
evidence that they are swing amplified modes. The remainder are dominated by two-arm systems
for which the model predicts significantly higher arm numbers. These are likely driven by tidal
interactions or other mechanisms.
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1 INTRODUCTION

A significant fraction of the local galaxy population dis-
play discs with spiral structure, and gaining an under-
standing why spiral patterns exist has been the subject of
numerous studies. A multitude of mechanisms have been
proposed to explain the existence of spiral arms. The
existence of two arm ‘grand design’ spirals is predicted
by density wave theory (Lindblad 1963; Lin & Shu 1964)
and tidal interactions (Toomre & Toomre 1972; Tully 1974;
Oh et al. 2008; Elmegreen & Elmegreen 1983; Dobbs et al.
2010). An alternative hypothesis, known as swing amplifica-
tion (Goldreich & Lynden-Bell 1965; Julian & Toomre 1966;
Goldreich & Tremaine 1978; Toomre 1981) has been pro-
posed as a mechanism via which most types of spiral arms
that are observed in the local Universe, from grand design
to flocculent, can be produced. However, a consistent theory
to describe all galaxy spiral structure is elusive, and a single
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mechanism may not be responsible for all types of observed
spiral structure.

Swing amplification itself is a manifestation of a bal-
ance between shear and self gravity. Self gravity tends to
form structures, and shear tends to break up the largest
structures over time. Spiral arms form due to unstable re-
gions where self gravity dominates, or from initially lead-
ing density waves, but are eventually broken up by the disc
shear. In the swing amplified mechanism, leading waves,
or regions of density enhancement caused by self gravity,
are amplified to stationary, trailing wave patterns around
the corotation radius (we refer the reader to Sec. 2.1.3
of Dobbs & Baba 2014 for a more detailed description
of swing amplification). Spiral arms can be transient in
nature, but a long-lived swing amplified mode can exist
in galaxy discs over several rotations (Grand et al. 2012;
D’Onghia et al. 2013; Sellwood & Carlberg 2014): although
spiral arms can be broken and re-made, the average to-
tal spiral arm number, or dominant mode, will exist be-
yond the lifetime of a single spiral arm. The nature of these
long-lived modes is directly related to the underlying mass
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distribution of these galaxy discs. Notably, swing amplified
models have predicted that spiral arm number should de-
pend on the underlying mass distribution in spiral galax-
ies (Athanassoula et al. 1987; Athanassoula 1988; Bosma
1999; Fuchs 1999; Fuchs & Möllenhoff 1999; Fuchs et al.
2004; Fuchs 2008). Spiral arm numbers (D’Onghia et al.
2013; D’Onghia 2015) and pitch angles (Baba et al. 2013;
Michikoshi & Kokubo 2014, 2016) can now be predicted di-
rectly from the mathematics of swing amplification.

Simulations have the potential to shed some light
on what mechanisms are at play in spiral galaxies. Disc
simulations give us a unique opportunity to study how
forces act to introduce or amplify spiral arms. The
earliest N-body simulations struggled to produce real-
istic spiral arms, with two-arm modes quickly leading
to the growth of a bar (Miller et al. 1970; Hohl 1971;
Kalnajs & Athanassoula-Georgala 1974; Zang 1976). In or-
der to stop the rapid formation of a bar, Ostriker & Peebles
(1973) (and also Hohl 1976) demonstrated that the addition
of a spherical dark matter halo component makes cold discs
more stable. Early simulations did, however, model galaxies
with rigid dark matter haloes; Athanassoula (2002) showed
that discs embedded in massive dark matter haloes can still
form bars, if a live model with interaction between the halo
and the disc is considered. It seems that discs and haloes ex-
ist in a somewhat complicated relationship, and both play a
role shaping the spiral structure in galaxies. A result of par-
ticular interest from the latest simulations of spiral structure
is that spiral arm patterns may exist as long-lived modes
seeded by small density perturbations in the disc (Fujii et al.
2011; Wada et al. 2011; Grand et al. 2012; D’Onghia et al.
2013). Such spiral arms arise due to local density perturba-
tions via a swing amplified mechanism.

A key issue for any simulation is directly reproduc-
ing observable properties of spiral galaxies. There is still
much conflict, with disc simulations usually predicting dom-
inant many-arm modes in galaxy discs. Observations in-
stead suggest that even in unbarred galaxies, two-arm
spirals are the most common type of spiral structure
(Elmegreen & Elmegreen 1982; Hart et al. 2016) which do
not arise as readily in the simulations (D’Onghia 2015).
Therefore, there may be a number of mechanisms respon-
sible for the different spiral arm structures we observe, and
all spiral galaxies may not be governed by a dominant swing
amplified mode.

The aims of this paper are twofold. We first carefully
obtain predictions from swing amplification for samples of
real galaxies. These predictions are then compared to ob-
served spiral arm properties, in order to evaluate the per-
formance of the swing amplification model. Swing amplifi-
cation predicts both the spiral arm number and the pitch
angle in galaxies with respect to the relative masses and
sizes of the dark matter halo, disc and bulge in galaxies. We
combine measurements of bulge and disc masses and sizes
with published dark matter halo scaling relations to predict
the arm properties of galaxies. We utilise a large sample
of spirals from the SDSS (York et al. 2000) and a smaller
sample from S4G (Sheth et al. 2010) spiral galaxies. Using
these data, predicted spiral arm numbers and pitch angles
are compared to the same observed quantities. The paper is
organised as follows. In Sec. 2, we describe all of the sources
for the swing amplified model. These include observables for

baryonic masses and sizes, and scaling relations for the dark
matter component for which we have no direct measure-
ments. In Sec. 3, we describe predictions of arm number and
pitch angle for a swing amplified model. These predictions
are then tested against their respective observed quantities
in Sec. 4. In Sec. 5, the results are discussed in context of the
relevant theory and literature. The main conclusions from
the analysis are described in Sec. 6.

This paper assumes a flat cosmology with Ωm = 0.3 and
H0 = 70kms−1 Mpc−1.

2 DATA

In this paper, the overall characteristics of galaxies are pre-
dicted with a swing amplification model, and compared to
real visual characteristics in galaxies. The model we employ
has three main components – a galaxy bulge, disc and dark
matter halo. Measurements and models for these compo-
nents are outlined in the rest of this section.

2.1 Sample selection and visual morphologies

2.1.1 SDSS

The main sample utilised for this paper is taken from
the SDSS main galaxy sample (MGS). The galaxies are
taken from the SDSS Data Release 7 (DR7; Abazajian et al.
2009). The main galaxy sample is an r-band selected sam-
ple, brighter than mr=17.77. In this paper, we only con-
sider galaxies which have reliable visual classifications from
Galaxy Zoo 2 (GZ2;Willett et al. 2013) – this sample has a
brighter r-band limit, complete to mr=17.0, avoiding galax-
ies that are too faint to be reliably classified. We also em-
ploy an upper redshift limit of z = 0.085 in accordance with
Willett et al. (2015) and Hart et al. (2016), a general limit
to which classifications remain reliable. In this paper, we
are only concerned with how the relative sizes and masses of
components affect the overall galaxy spiral arm morphology.
For this reason, we make no completeness cuts to the sample,
selecting all galaxies in the redshift range 0.02 < z ≤ 0.085
brighter than mr=17.0.

Galaxy morphological data are obtained from GZ2. We
use the debiased statistics from Hart et al. (2016)1 to ensure
our results are free of resolution-dependent redshift bias.
GZ2 users were presented with optical gri composite images
and asked a number of questions, regarding the presence of
spiral arms and bars. We apply a cut of pspiral ≥ 0.5 to select
a reliable sample of spiral galaxies (see Hart et al. 2016 for
examples of spiral galaxies selected in this way). An incli-
nation cut of (b/a)g > 0.4 is also used to ensure we only
select face-on spirals with reliable spiral morphology esti-
mates, the same cut we used in Hart et al. (2017a). The prin-
cipal concern of this paper is spiral structure, without the
influence of bars, so we also define a clean, unbarred sample
of galaxies, with pbar ≤ 0.2. This cut has been used in GZ2
papers before to select unbarred galaxies (Galloway et al.
2015; Kruk et al. 2018).

1 GZ2 morphological measurements are available at
data.galaxyzoo.org
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Spiral arm numbers are obtained from the GZ2 cat-
alogue, depending on the fractional responses to the ‘how
many spiral arms are there?’ question. We make use of two
arm number statistics in this paper. The first is m, the re-
sponse which had the greatest debiased vote fraction – this
can take the values ‘1’, ‘2’, ‘3’, ‘4’ and ‘5+’. The second
is mavg, the average arm number from the classifications,
described in Hart et al. (2017b). This can take any value
between 1 and 5, where mavg = 1 means all classifiers said a
galaxy had one spiral arm, and mavg = 5 means all classifiers
said a galaxy had five or more spiral arms.

Given the lack of directly measured pitch angles in GZ2,
we use an automated method to detect spiral arms in galax-
ies and measure their pitch angles, ψ. The code SpArc-
FiRe2 is used for this purpose. This code automatically de-
tects and fits logarithmic spiral arms to input galaxy im-
ages, outputting a number of statistics for each arc. We ran
SpArcFiRe on the r-band images of galaxies, and reliable
arcs were detected as described in Hart et al. (2017b). Any
galaxies which had no reliable spiral arms detected are re-
moved from further analysis of spiral arm pitch angle. We
define the spiral arm pitch angle for each galaxy as the arc-
length weighted average pitch angle, ψavg. Further details
can be found in Hart et al. (2017b).

2.1.2 S4G

Our analysis is primarily concerned with testing SDSS galax-
ies with associated morphological information from Galaxy
Zoo and SpArcFiRe. However, as a check of both these
data sets and our implementation of the swing amplification
model, we additionally compare to an independent dataset.
We therefore also include a sample of spiral galaxies from the
S4G sample (Sheth et al. 2010; Muñoz-Mateos et al. 2013;
Querejeta et al. 2015). This is a low-redshift, volume-limited
sample of galaxies closer than d = 40 Mpc, galactic latitude
|b| > 30, brighter than mB = 15.5 and larger than D25 = 1
arcmin. Hi 21cm line measurements are required for accu-
rate distance determination, so the S4G sample therefore
consists of late-type galaxies by design. Unlike the SDSS
sample, this sample is observed in the near infra-red, specif-
ically the Spitzer 3.6µm and 4.5µm bands. The visual mor-
phologies are from the classifications of Buta et al. (2015).
We select SA galaxies from the S4G database, a sample of
101 galaxies in total. The spiral arm structure is also listed
in this catalogue, with galaxies listed as either grand design
(G), many-arm (M) or flocculent (F). Spiral arm pitch an-
gles are obtained from Herrera-Endoqui et al. (2015). All of
the galaxies in S4G were visually inspected, and logarithmic
spiral arms were drawn and fit to the galaxies. Given that
we expect all features to be real spiral arms in these galax-
ies, the galaxy pitch angle is given by the mean pitch angle
of all of the measured spiral arms in each galaxy.

2.2 Baryonic masses and sizes

Galaxy stellar masses and sizes for the SDSS sample are ob-
tained from the photometric decompositions of Simard et al.

2 http://sparcfire.ics.uci.edu/

(2011) and Mendel et al. (2014). Simard et al. (2011) fit-
ted two-component models in the g and r bands for all
SDSS galaxies with GIM2D (Simard et al. 2002). Sizes of
the relative bulge and disc components are taken from
the Simard et al. (2011) fits to the r-band of galaxies.
Simard et al. (2011) provides measurements of scale length
for the disc and half light radius for the bulge. For our Hern-
quist bulge, scale lengths are measured by dividing the half
light radius by a factor of 1 +

√
2, as described by Eq. 4 of

Hernquist (1990).

We note that the r-band does not directly trace the
overall stellar mass, with light dominated by younger stars.
We therefore correct the sizes of the bulge and disc com-
ponents by dividing by a factor of 1.5 ± 0.2, given that the
near infra-red is usually ∼ 1.5 times smaller than the optical
component in galaxies (Vulcani et al. 2014; Kennedy et al.
2016). Mendel et al. (2014) took the fitting a stage further
and scaled the component fluxes to match the SDSS ugriz
bands and fit spectral energy distributions (SEDs) to both
the bulge and disc. The Mendel et al. (2014) catalogue there-
fore gives an estimate of the the total stellar mass content
of the SDSS galaxies in the bulge and disc components.
To avoid any spuriously fit galaxies, only galaxies where
Mendel et al. (2014) deemed the fit to be either a disc system
(type=2) or a bulge+disc system (type=3) were included in
any samples used later in this paper. Using the bulge+disc
fits assumes that all galaxies have two distinct components,
but this is not always the case (Simmons et al. 2013, 2017).
With this in mind, for galaxies where the F-test statistic for
a two-component fit is ≤ 0.32, the disc-only fit is used, and
the bulge mass component is set to 0 – motivation for this
cut is given in App. B.

For the S4G sample, photometric bulge+disc decompo-
sitions are again used to determine the masses and sizes of
the stellar component of galaxies. Bulge and disc photometry
are obtained from the fits to the 3.6µm band from Salo et al.
(2015). We select only galaxies where either a single disc
component or a disc and bulge component are well-fit (qual-
ity=5). Given that the near infra-red component follows the
underlying stellar mass distributions of galaxies closely, we
use the 3.6µm fits directly, without a scaling like that used
for the SDSS sample (Eskew et al. 2012; Meidt et al. 2012).
In reality, the near infra-red mass to light ratio, Υ∗ will
also vary with respect to the age of the component consid-
ered (McGaugh et al. 2016), with older, redder stellar pop-
ulations having more mass for a given 3.6µm luminosity.
Schombert & McGaugh (2014) give values of Υ3.6

∗ = 0.5 for
discs and Υ3.6

∗ = 0.7 for bulges. Other estimates of disc mass-
to-light ratios vary by ≈ 0.1, and single value Υ3.6

∗ have been
shown to be reasonable estimates (Meidt et al. 2014). Given
that the bulge contribution is small in the S4G sample (see
Sec. 2.4), we assume a constant mass-to-light ratio for all of
the components; any variation in Υ3.6

∗ has little effect on the
results.

The fraction of the mass in the bulge and disc compo-
nent is simply the fraction of the 3.6µm light in each com-
ponent from Salo et al. (2015), and the sizes of each of the
components are simply the sizes of the components mea-
sured at 3.6µm.
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2.2.1 HI masses and sizes

For the SDSS sample, a set of Hi measurements is also avail-
able. This can help address any missing baryonic mass in
galaxies, given that a fraction of the mass in galaxy discs
is gaseous rather than stellar. For a fraction of the SDSS
sample, there are Hi masses available from ALFALFA sur-
vey measurements of the Hi 21cm line. These masses are
obtained from the α70 data release of the ALFALFA sur-
vey (Giovanelli et al. 2005; Haynes et al. 2011). Reliable de-
tections are defined as objects with ALFALFA detcode = 1
or 2 (described in Haynes et al. 2011) and a single SDSS
matched optical counterpart in accordance with Hart et al.
(2017a). For the galaxies with no direct measurement, we
use Hi masses estimated from other galaxy properties.
Teimoorinia et al. (2017) fitted an artificial neural network
(ANN) to 15 input galaxy parameters to estimate Hi masses.
These estimates do not rely on a single parameter such as
stellar mass or colour, which have been shown to vary sys-
tematically with spiral arm number (Hart et al. 2017a,b),
meaning they should be valid estimates for all galaxies. Dif-
ferent Hi estimates have different uncertainties, described
by the quantity Cfgas in Teimoorinia et al. (2017). We there-
fore select reliable estimates as galaxies with Cfgas ≥ 0.5
and include an uncertainty of 0.22 dex, in accordance with
Teimoorinia et al. (2017).

Hi disc size estimates are obtained from the following
scaling relation between Hi size and galaxy disc size from
Lelli et al. (2016):

log(RHI) = (0.86 ± 0.04) log(Rd) + (0.68 ± 0.03), (1)

where RHI is the radius at which the Hi surface density falls
to 1 M�pc−2. It has also been demonstrated that the Hi
scale length, rs,HI, is closely related to RHI – we therefore
use a further scaling relation to equate the two quantities
from Wang et al. (2014):

rs,HI = (0.19 ± 0.03)RHI. (2)

Using these relations, we create exponential stellar +
Hi discs. The total disc mass is given by adding the Hi mass
to the stellar disc mass, and the disc scale length is given by
the scale length of the best fitting exponential profile to the
stellar plus disc systems. Discs created in this way are later
referred to as SDSS+Hi samples.

2.3 Dark matter haloes

The final component that requires consideration is the dark
matter halo, the only component in the model that is not
observable. We use published scaling relations between the
galaxy dark matter halo mass and galaxy stellar mass to
estimate the dark matter halo mass for each galaxy. We
use the relation of Dutton et al. (2010), which combined
abundance matching studies and various observational stud-
ies of dark matter haloes from satellite kinematics and
weak lensing. The best fit line to observational studies
from Mandelbaum et al. (2006), Conroy et al. (2007) and
More et al. (2011) for late-type galaxies yielded the follow-
ing scaling relation:

y = y0
( x

x0

)α [ 1
2
+

1
2

( x
x0

)γ ] (β−α)/γ
. (3)

The quantity x is the galaxy total stellar mass, Mstar, and
the quantity y is the halo-to-galaxy mass, y = M200/Mstar.
For late type galaxies, the parameters are α = −0.50+0.025

−0.075,

β = 0.0, log(x0) = 10.4, log(y0) = 1.89+0.14
−0.12 and γ = 1.0.

We calculate the total halo mass for each of our galaxies
using Eq. 3 and the total galaxy stellar mass defined in
Sec. 2.2. These are then converted to virial radii, R200, with
(e.g. Huang et al. 2017):

R200 =
[ 3M200
4π · 200ρcrit

]1/3
, (4)

where ρcrit is the critical density of the Universe at z = 0. To
convert this to a halo scale radius, ah, we use the relation

R200 = c200ah. (5)

In order to measure a scale radius, one requires knowledge
of the halo concentration. We again rely on a published
scaling relation, this time from N-body simulations which
form NFW profiles. The halo concentration is related to
the halo mass using the abundance matching equation of
Dutton & Macciò (2014):

log(c200) = 0.905 − 0.101 log(M200/[1012h−1M� ]). (6)

From these scaling relations, we compute the total halo mass
M200 and the scale length ah for each of our galaxies.

2.3.1 Halo profiles

For mathematical simplicity, we consider two dark matter
profiles in this analysis. The first is the Hernquist (1990)
dark matter halo, referred to as ‘Hernquist’ hereafter. This
halo has the desirable quality that it closely matches the
cusped NFW dark matter haloes (Navarro, Frenk & White
1996) in the inner regions. In the outer regions, the dark
matter halo begins to deviate from that of the NFW dark
matter profile. As it is the inner dark matter profile that is
most critical to influencing spiral arm morphology in galaxy
discs (D’Onghia 2015), we choose to match the inner re-
gions closely by matching to the dark matter density at ah.
The shape of the Hernquist halo for a galaxy with parame-
ters from the Milky Way measured in Bovy & Rix (2013) is
shown by the orange dashed line in Fig. 1a.

The Hernquist profile is a classic ‘cusped’ profile pre-
dicted by simulations (e.g. Navarro, Frenk & White 1996).
However, measurements of low surface brightness galax-
ies reveal that the inner profiles of galaxies are in-
stead more likely to have central ‘cores’ (de Blok 2010;
Bullock & Boylan-Kolchin 2017). In order to understand the
influence on the shape of the dark matter profile, we adopt
a Burkert (1995) dark matter profile for comparison, de-
scribed as a ‘Burkert’ profile in the rest of this paper. The
Burkert profile has a number of characteristics that make
it ideal for comparison to the Hernquist profile. It follows
a similar shape to the much used NFW profile in the outer
regions, which is useful given that the scaling relations we
employ in this paper are based upon NFW profiles. How-
ever, its centre has a ‘core’ rather than a ‘cusp’, unlike the
Hernquist and NFW profiles. In Fig. 1a, the blue line in-
dicates the Burkert dark matter halo profile for the Milky
Way model. Together, these allow us to compare the spiral
arm properties of ‘cusped’ and ‘cored’ profiles. The use of
the two different dark matter halo profiles also allows us to
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Figure 1. (a) Comparison of NFW (black dotted line), Hern-
quist (orange dashed line) and Burkert (blue line) halo shapes

for the Milky Way. The Hernquist halo follows the cuspy shape

of the NFW profile, and the Burkert profile is instead cored. (b)
Comparison of various values of α. When 0 ≤ α ≤ 1, the halo

changes between more cored or more cusped. When α < 0, the

cored shape is retained, but the halo is less massive. When α > 1,
the cusped shape is retained, but the halo is made more massive.

interpolate between them, a property which is used later in
this paper. We define the quantity α to interpolate between
a cusped and cored profile. The quantity α is used to give
the following dark matter halo profiles:

ρ(r) = (1 + α)ρb(r) (α < 0)

ρ(r) = (1 − α)ρb(r) + αρh(r) (0 ≤ α ≤ 1)

ρ(r) = αρh(r) (α > 1),

(7)

where ρh(r) and ρb(r) are the densities of the Hernquist and
Burkert dark matter profiles at a radius r. The influence
that the quantity α has on the dark matter halo is shown in
Fig. 1b. A value of α = 1 means that the dark matter halo is a
cusped Hernquist halo and α = 0 means that the dark matter
halo is a cored Burkert halo. Interpolating between the two
means that the halo is more or less like the Hernquist and
Burkert profiles. To allow for for sensible behaviour outside
0 ≤ α ≤ 1, we extrapolate as follows. For values of α < 0, the
halo shape does not change from that of the Burkert profile,
but the total halo mass in the inner regions is reduced. For
α > 1, the halo stays cusped, but is more massive in the
inner regions.

Table 1. Number of galaxies in each of the three samples used in
this paper. The first column shows the name of each sample. The

second column indicates the total number of galaxies in each sam-

ple, and the third column indicates how many of these galaxies
have measured pitch angles. The final column shows the median,

16th and 84th percentiles of stellar mass for each sample.

Sample Ngal Ngal (with measured ψ) log(M/M� )

S4G 101 77 10.4(9.8, 10.8)
SDSS 7611 2661 10.4(9.9, 10.8)

SDSS+Hi 5696 2241 10.3(9.8, 10.7)

2.4 Overall galaxy properties

Only galaxies with measurements of bulge+disc or disc
masses are included in these final samples. The overall num-
bers of galaxies in each of these samples are listed in the
second column of Table. 2.4. Only some of the galaxies have
reliably identified spiral arms from which the pitch angle, ψ
can be measured – the number of galaxies with measured ψ

values are shown in the third column of Table. 2.4. The final
column shows the median, 16th and 84th percentiles of the
stellar mass of all galaxies in each sample. Despite the dif-
ferent sample selections employed in each of the samples, all
of the samples have similar stellar mass distributions with
median log(M∗) ∼ 10.4 log(M� ).

The overall population stellar mass and size character-
istics are shown in Fig. 2. The low-redshift galaxies occupy a
range of bulge, disc and halo masses. The first column shows
the bulge, disc and halo stellar masses for the S4G sample
(grey filled histograms), the SDSS sample (purple stepped
histograms) and the SDSS+Hi sample (green stepped his-
tograms with dashed lines). The first attribute to note is
the change in the disc mass and scale length when the Hi is
included in the disc fit, shown in Fig. 2a. The median disc
mass is 10.06+0.46

−0.39 log(M� ) for the pure stellar disc and in-

creases to 10.32+0.27
−0.26 log(M� ) with the inclusion of Hi. The

disc radius also increases from 2.53+0.82
−1.07 to 2.62+0.73

−0.90 kpc.
These differences lead to differences in the disc fractions, fd,
in Fig. 2c-d, where the inclusion of Hi in the discs leads to
the discs being more maximal. The disc fraction is defined as
the fraction of the total mass inside a given radius that is in
the baryonic disc component, Md(r)/[Mb(r)+Md(r)+Mh(r)].
The inclusion of Hi has a strong influence on the disc prop-
erties, which may in turn affect the properties of spiral arms,
which will be explored in Sec. 4.

The next item we note is the clear differences in the
bulge properties of galaxies selected for the SDSS and S4G
samples. From Fig. 2a-b, we see that the disc properties are
consistent in these samples, despite the differing selection
criteria. The bulges of the SDSS galaxies have median stel-
lar mass of 9.88+1.07

−0.69 log(M� ) (or 9.83+0.91
−0.67 log(M� ) for the

SDSS+Hi sample) and median radius of 0.74+0.38
−0.51 kpc (or

0.80+0.40
−0.50 kpc for the SDSS+Hi sample). However, bulges

in the S4G sample are systematically smaller in both mass
(Fig. 2e) and size (Fig. 2f), with median values of 8.99+0.64

−0.76
log(M� ) and 0.15+0.07

−0.14 kpc. These offsets could be due to
two reasons. The first is sample selection: the SDSS galaxy
sample should include all galaxies with spiral morphology,
regardless of bulge mass; the selection of late-type galaxies in
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Figure 2. Distributions of galaxy stellar mass, scale radius and mass fractions for our galaxy samples. The top row shows the distributions

of disc total stellar mass (a), radius (b), fraction of the total galaxy mass within 2.2Rd for the Hernquist halo (c) and the same fraction
with a Burkert halo (d). The same four parameters are shown for the galaxy bulge (middle row, e-h) and the galaxy halo (bottom row,

i-l). The distributions are shown for the three distributions utilised in this paper (see Sec. 2): the S4G sample is shown by the grey filled

histograms, the SDSS is shown by the purple stepped histograms and the SDSS+Hi is shown by the thicker dashed green histograms.
The median error on the parameters are indicated by the error bars in the upper right of each sub figure.

the Buta et al. (2015) classifications may be slightly differ-
ent to the ones we employ for our SDSS samples. However,
given the careful selection outlined in Sec. 2.1, we expect
both samples to comprise primarily of unbarred, late-type,
spirals. The only differences would therefore be caused by
the nature of the visual classifications employed. For exam-
ple, in GZ2, users were not asked to quantify the strength of
bar features. The GZ2 sample may therefore comprise some
weakly barred galaxies, which would have been detected by
the Buta et al. (2015) due to the higher resolution imaging
(as the S4G galaxies are selected at a closer distance than the
SDSS galaxies, as described in Sec. 2.1.1 and 2.1.2), and the
expert nature of the classifications. The other, likely more
significant difference, is that the techniques used to measure
bulge mass differ, mainly in the wavelength selected, but also
in the image resolution. The SDSS bulge-disc masses are de-
rived from fits to the stellar population of the galaxies using
the optical ugriz bands. The S4G sample instead uses infor-
mation from high resolution images of galaxies in the near
infra-red, which directly traces the older stellar population
and thus the underlying stellar mass distribution. Investi-

gating the true cause of this offset is beyond the scope of
this paper, but does highlight the importance of using two
complementary datasets to investigate any results.

3 THE GALAXY MODEL

In this section, we draw upon a number of measured param-
eters to model spiral galaxies and predict their properties
with a swing amplified model.3 Wherever there are no di-
rectly measurable quantities in galaxies, we use well-defined
scaling relations to predict expected properties in galaxies.
All of the input quantities to the models defined in this sec-
tion are described in Sec. 2.

3 The code used to model the galaxies described in this section
is publicly available at https://zenodo.org/record/1164581
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3.1 Swing amplification derived quantities

We adopt the model described in D’Onghia et al. (2013) and
D’Onghia (2015) for our spiral galaxies. In D’Onghia (2015),
an equation was derived from arguments of swing amplifica-
tion and disc stability, and verified by N-body simulations of
isolated discs. The equation describing the dominant spiral
arm mode at a given galaxy radius is given by:

m =
e2y

X

( [Mb
Md

2y + 3ab/Rd

(2y + ab/Rd)3
]

+
[Mh
Md

2y + 3ah/Rd

(2y + ah/Rd)3
]

+ y2(3I0K0 − 3I0K1 + I1K2 − I2K1)

+ 4y(I0K0 − I1K1)
)
.

(8)

The quantity y = R/2Rd, meaning that the predicted spiral
arm number can vary with galaxy radius. This equation fol-
lows from classic models of swing amplification, first outlined
in Toomre (1981). A useful property of this equation is that
it can be split into three main components, each contributing
to the expected spiral arm number: the bulge term, the halo
term and the disc term. The bulge term, mb, is given by the
first line to the right of the equality in Eq. 8, and depends
on the bulge mass (Mb), disc mass (Md), bulge scale length
(ab) and disc scale length (Rd). The simplicity of this term’s
form is due to the adoption of a Hernquist profile to model
the bulge mass distribution, compared to, for example, a de
Vaucoleurs profile (de Vaucouleurs 1948). Generally, galax-
ies with greater bulge-to-disc mass ratios and galaxies with
smaller bulge-to-disc size ratios for a given bulge mass are
predicted to have more spiral arms.

The second line to the right of the equality in
Eq. 8 gives a similar term which we call mh, this time
with the bulge mass and size replaced by halo mass
and size (Mh and ah). This term is very similar to the
one for the the bulge, as D’Onghia (2015) model the
halo with a Hernquist profile. However, there is evi-
dence that galaxy dark matter haloes may be less cuspy
than a Hernquist profile (e.g. Flores & Primack 1994;
van den Bosch et al. 2000; de Blok et al. 2001; de Blok
2010; Bullock & Boylan-Kolchin 2017). We therefore derive
an alternative form of the halo term for a Burkert dark mat-
ter profile in App. A. Either way, there is a clear expected
dependence on the dark matter halo and disc properties –
galaxies with greater halo-to-disc mass ratios and galaxies
with smaller halo-to-disc sizes are predicted to have more
spiral arms.

The final term of the Eq. 8 is the disc term, md.
The mathematical formulation is given in more detail in
D’Onghia et al. (2013). The quantities I0 and K0 are Bessel
functions of the first kind with respect to y. From equations
8 and A9, spiral arm numbers can be predicted for the swing
amplified model.

Another property we can use to quantify the spiral arms
is the pitch angle, ψ. The rate of shear has a direct influ-
ence on the pitch angle of the spiral arms one expects to
measure (Fuchs 2001; Seigar et al. 2006, 2008; Baba et al.
2013). The shear is given by (e.g. Julian & Toomre 1966;
Michikoshi & Kokubo 2016):

Γ = 2 −
κ2

2Ω2 . (9)

The quantity κ is the epicycle frequency, and Ω is the an-
gular frequency of the system. A falling rotation curve has
Γ > 1, and a rising rotation curve has Γ < 1. Various con-
version factors exist for converting the rate of shear to a
pitch angle. Some are based upon observational studies of
nearby galaxies (Seigar et al. 2006), others from the analy-
sis of the mathematics of swing amplification (Fuchs 2001)
and others are directly from simulations of galaxy discs
(Baba et al. 2013; Michikoshi & Kokubo 2014). We assume
the pitch angles of our spirals to follow the following rela-
tion from Michikoshi & Kokubo (2014), taken from simula-
tions. These predictions match up to analytical predictions
from Fuchs (2001) for Γ < 1, with the advantage that they
cover the entire range of Γ from 0–2. Michikoshi & Kokubo
(2014) note that the prediction is obtained from simulations
of many-arm/flocculent structures, rather than grand de-
sign spirals. However, Fig. 2 of Michikoshi & Kokubo (2014)
shows that the model is well-matched to the observed spi-
ral arm pitch angle of grand design spirals from Seigar et al.
(2006) within 0.5 . Γ . 1.5, where the majority of our spiral
galaxies lie. We therefore apply this equation to all of the
spiral galaxies in our sample. The predicted pitch angle is
given by:

ψ =
2
7

√
4 − 2Γ
Γ

. (10)

The value Γ uses Ω and κ defined in equations 4 of D’Onghia
(2015) and 6 of D’Onghia et al. (2013) for the Hernquist
profile and A5 and A7 of this paper for the Burkert profile.
An issue that we have is deciding where to measure the spiral
arm number; Fig. 2 of Bosma (1999) clearly demonstrates
that lower order modes are more strongly amplified in the
inner regions, and higher order modes are more strongly
amplified when one reaches the edge of the disc, an effect
we see in Fig. 3. At small radii, the bulge, and potentially
the presence of weak bars, makes arms hard to distinguish.
At too large a distance from the galaxy centre, arms are too
faint to distinguish. For the purpose of this paper, we choose
to predict spiral arm number at 2 disc scale radii, a radius
which should be well into the galaxy disc, yet far enough
out that the inner features of a galaxy do not affect the
measurement. The effect of measuring arms at different radii
is discussed further in Sec. 5.1. We also choose to predict
spiral arm pitch angles at 2 scale radii in the rest of this
paper.

3.1.1 Predicted arm numbers for typical spirals

The differences in halo profiles can have a strong influence
on the expected spiral arm numbers in galaxies. In Fig. 3,
the spiral arm numbers predicted from the galaxy model de-
scribed in Sec. 3 are shown for typical spiral galaxies from
the S4G and SDSS samples used in this paper. For reference,
we also compute the halo properties of the Milky Way us-
ing the structural parameters of Bovy & Rix (2013). Their
measured value of 5.9±0.5 × 1010M� predicts a halo of mass
M200 = 2.14± 0.83 × 1012M� and scale radius ah = 34.5± 4.5
kpc. The predicted number of arms for the Milky Way
for this halo mass, disc mass and a galaxy bulge of mass
4 × 109M� and scale radius 0.6 kpc (as used in D’Onghia
2015) are shown in Fig. 3a. We see a small offset in that the
model predicts more spiral arms than the D’Onghia (2015)
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(b) S4G
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(c) SDSS
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Figure 3. Spiral arm number vs. radius for four typical spiral galaxies: (a) the Milky Way (Bovy & Rix 2013); (b) a galaxy with median
properties from the S4G sample; (c) a galaxy with median properties from the SDSS sample and (d) a galaxy with median properties

from the SDSS+Hi sample. The orange dashed lines show the expected spiral arm numbers for the cusped Hernquist dark matter profile,

and the thinner, solid blue lines show the expected arm number for the cored Burkert profile. Both galaxy properties and halo shape
have a strong influence on the expected spiral arm number in galaxies. The solid black line in (a) indicates the prediction for the Milky

Way from D’Onghia (2015). The vertical black dotted lines in (a) indicate the radius of the solar neighbourhood, at 7.94 ± 0.42 kpc, or
3.6 ± 0.2Rd (Horrobin et al. 2004). The disc, bulge and halo parameters are listed in the top-left corner of each sub plot.

Milky Way model – this difference is due to the differences in
the halo mass and size, with our predicted halo being larger
in mass and than the one used in D’Onghia (2015).

In Fig. 3b-d, we plot the same radius vs. predicted arm
number trend for galaxies typical of the S4G, SDSS and
SDSS+Hi samples. We use the median values for disc, bulge
and halo masses and sizes, and median error values for each
sample. The variations in the galaxy parameters discussed
in Sec. 2.4 lead to changes in the expected spiral arm mor-
phology. The median S4G galaxy follows the trend of the
Milky Way fairly closely, albeit with a larger error in the ex-
pected spiral arm number, owing to greater uncertainty in
the measured bulge and disc parameters. A galaxy typical
of the SDSS sample predicts more spiral arms, owing to the
fact that the bulge is more prominent for this model – this
leads to an increase in the size of the bulge term in Eq. 8,
which in turn increases the predicted spiral arm number. In-
cluding the Hi component in the SDSS model makes the disc
more dominant, which leads to a suppression of the expected
spiral arm number, which can be seen comparing Fig. 3c and

d. We also see the direct influence that the dark matter pro-
file shape has on the spiral arm numbers predicted for our
galaxy model. The Hernquist profile is strongly cusped in
the centre, whereas the Burkert profile is almost flat. The
Burkert halo therefore has less influence on the spiral arm
number in the baryon-dominated centre of galaxies, leading
to systems being more disc dominated and therefore having
fewer spiral arms. The predicted spiral arm number is also
distinctly flatter in the inner regions, which is particularly
apparent for the SDSS and SDSS+Hi samples in Fig. 3c-d.
From these plots we can conclude that there are a num-
ber of factors that influence the spiral arm number in the
model: more disc-dominated systems should have fewer spi-
ral arms, and systems with flatter dark matter halo profiles
should also have systematically fewer spiral arms.

The models outlined in this section give directly pre-
dictable arm numbers and pitch angles. All of the predic-
tions are taken from direct analytical calculations of swing
amplification theory and disc stability, and further verified
by simulations. This simple galaxy model, with arm mor-
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Figure 4. Distributions of predicted spiral arm number for (a)
S4G, (b) SDSS and (c) SDSS+Hi galaxy samples. The grey his-

tograms show the distributions of average arm number mavg for

the SDSS galaxy sample in a-b and the SDSS+Hi sample in c, and
the vertical dotted black line shows their corresponding median

values. The orange dashed histograms show the expected distri-

bution for the Hernquist halo model, and the blue line shows the
same distribution for the Burkert halo model. The error bars show

the median error on the predicted m-value for each sample.

phology predictions from only a bulge, disc and dark mat-
ter halo can now be tested with respect to observed visual
galaxy morphology.

4 COMPARING MODEL PREDICTIONS
WITH OBSERVATIONS

In this section, we compare the predictions of swing am-
plification outlined in Sec. 3 with observed morphologies of
spiral galaxies. We begin by looking at the predicted arm
number and pitch angle distributions from the Burkert and
Hernquist haloes, in order to check whether they match the
overall distributions we observe in real galaxies. We then
look at how well the model can predict spiral arm numbers
on a galaxy by galaxy basis, looking in more detail at the
properties the dark matter halo requires for the model to
work.

4.1 Spiral arm number distributions

Spiral arm numbers pose an interesting challenge to both
observers and modellers of disc galaxies. From obser-
vations, we know that low arm numbers are preferred,
with two-arm structures being particularly prevalent in
the low-redshift Universe (Elmegreen & Elmegreen 1982;
Grosbøl et al. 2004; Hart et al. 2016). However, simulations
often try to predict spiral arm numbers in the absence of

bars. In this case, simulated spiral patterns are typically
dominated by higher-order modes i.e. many-arm patterns
(see Dobbs & Baba 2014 and references therein).

We plot the distributions of spiral arm numbers for our
samples of spiral galaxies in Fig. 4. The observed GZ2 mavg
arm number distribution of the SDSS sample is plotted for
reference in each panel. Additional histograms show the arm
number distributions predicted by our model for each halo
type and sample. Fig. 4a shows the S4G sample, Fig. 4b
shows the SDSS sample and Fig. 4c shows the SDSS+Hi
sample. In Fig. 4a, the SDSS sample is used for compari-
son, given its similarity in total stellar mass. From the ob-
served spiral arm numbers, we see the familiar trend that
disc galaxies tend to prefer lower order spiral modes, with
the two-arm mode being particularly prevalent – the modal
bin is centred on mavg = 2, and the median arm number

is 2.63+1.01
−0.67, where the ± values denote the 16th and 84th

percentiles. For SDSS+Hi, the modal bin is centred on 2.5
and the distribution has median arm number 2.76+0.96

−0.76. The
galaxy model with the Hernquist halo clearly produces too
many spiral arms, with median arm number 5.46+23.05

−1.55 for

the S4G sample, 8.71+7.57
−3.37 for the SDSS sample and 5.65+1.89

−1.27
for the SDSS+Hi sample. The reasons for these differences
between the samples were discussed in Sec. 3.1.1. We can
quantify how closely related these distributions are using
the KS D-statistic.4 If one instead models the distributions
with a cored Burkert dark matter halo (thinner blue lines),
we see that the distributions of spiral arm number match a
realistic spiral arm number distribution more closely, with
median mavg-values of 3.02+2.32

−0.82 for the pure stellar sample

and 2.51+0.89
−0.36 for SDSS+Hi and much lower D-statistics of

0.22 and 0.18 respectively. The result for the S4G sample
in Fig. 4a is that we produce too many two-arm galaxies.
We note, however, that the comparison is less certain, given
the different sample selections for S4G and SDSS, and the
potential discrepancies discussed in Sec. 2.4.

4.2 Spiral arm pitch angle distributions

The spiral arm pitch angle measures how tightly wound spi-
ral arms are. The expected pitch angle in spiral galaxies de-
pends on the underlying mass distribution, with more cen-
trally concentrated masses leading to tighter spiral arms.
This is usually predicted to be the case, no matter which
mechanism is responsible for producing the arms (Fuchs
2001; Seigar et al. 2008). However, other properties such as
the age of the spiral arm (Grand et al. 2012) and the number
of arms (Hart et al. 2017b) can affect pitch angles. From the
simulations of Michikoshi & Kokubo (2014), we can directly
predict the pitch angle given the rate of shear in the disc of
a galaxy (see Sec. 3). We plot the expected distributions of
spiral arm pitch angle in Fig. 5. The grey distributions show
the observed spiral arm pitch angles measured for the S4G
sample and the SDSS samples from Herrera-Endoqui et al.
(2015) and Hart et al. (2017b) respectively. If the model per-
fectly fit the spiral galaxy population as a whole, one would

4 Our simplified model is unlikely to recover the range of mor-
phologies exactly, so the KS p-value is likely to converge to close

to 0 in all cases, making it unsuitable for distinguishing any dif-

ferences.
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Figure 5. Distributions of predicted pitch angle for (a) S4G,
(b) SDSS and (c) SDSS+Hi galaxy samples. The grey filled his-

tograms show the measured spiral arm pitch angle distributions

for each sample from Herrera-Endoqui et al. (2015) for S4G and
Hart et al. (2017b) for the SDSS and SDSS+Hi samples. The or-

ange dashed histograms show the expected distribution for swing

amplified arms, assuming the Hernquist halo model, and the blue
line shows the same distribution for the Burkert halo model. The

median error in each measurement is shown by the error bar in

each panel and the black error bar shows the estimated observa-
tional error from Hart et al. (2017b).

expect a distribution of pitch angles centred on ∼19 and
16th-84th percentile range of ∼12-15 for each sample. In-
stead, for each dark matter halo profile, we observe a narrow
range of pitch angles with looser spiral arms (larger pitch
angles).

The Burkert profile leads to spiral arms which are
tighter than those in the Hernquist profile, but leads to dis-
tributions which are peaked at ∼ 24. Fig. 6 shows the distri-
butions of the shear, Γ. Both the Hernquist and the Burkert
halo in our galaxy model predict Γ ∼1. The Hernquist profile
has distributions of lower Γ values, but neither model gives
distributions of Γ>1 required to produce the distributions
of tighter spiral arms observed in real spiral galaxies.

One potential reason for the discrepancies in the pitch
angles is measurement error. In Hart et al. (2017b), we de-
rived two alternative pitch angle measurements, and saw a
scatter of ≈ 7 . Convolving the predicted pitch angle distribu-
tions with a random Gaussian error of 7 leads to the widen-
ing of the distributions – the 16th-84th percentile range is
≈ 12 for the S4G sample and ≈ 15 for the SDSS samples
in this case. This can account for the discrepancy between
the measured and observed pitch angles. However, the peaks
of the predicted pitch angle distributions are still too loose
compared to those observed.

In Fig. 7, we show the cumulative distributions of spiral
arm pitch angles for the model compared with the obser-
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Figure 6. Distributions of predicted values for shear, Γ, for (a)

S4G, (b) SDSS and (c) SDSS+Hi galaxy samples. The filled blue

histograms show the values with a Burkert halo, and the dashed
orange histograms show the distributions with a Hernquist halo.

The median error in each measurement is shown by the error bar

in each panel.

vations, with the predictions convolved with 7 errors. The
picture which emerges is interesting – the maximum pitch
angle seems to be the same between the observations and
predictions. The 99.7th percentile is ψ = 44.3 in the obser-
vations; the equivalent values are 43.3, 44.8, 45.0 and 43.0 for
the SDSS with the Hernquist halo, SDSS with the Burkert
halo, SDSS+Hi with the Hernquist halo and the SDSS+Hi
with the Burkert halo respectively. However, the model devi-
ates from the observed distributions for tighter spiral arms.
Swing amplified arms are, however, material in nature, and
do wind up over time. Grand et al. (2013) demonstrated
that spiral arms exist for ≈ 100 Myr, and wind up by approx-
imately 10 over the course of their lifetime. The dotted lines
in Fig. 7 show the same galaxies, with a random winding of
0-10 applied to each galaxy (each galaxy is randomly 0-10
tighter than the model prediction). In this case, we see the
model is much more consistent with the observations. This
is particularly the case for the Burkert dark matter profile,
where the KS D-statistic has been reduced to ≤ 0.1 in both
the SDSS and SDSS+Hi cases. In order to match the distri-
butions correctly, the winding up of spiral arms must also
be taken into account.

These results show that spiral arm number is the better
diagnostic tool for finding swing amplified spiral modes. The
model inputs that we employ cannot reproduce the subtle
differences in Γ that are required to produce the variety of
pitch angles in galaxies. The errors on the measured pitch
angles are also relatively large, of order 7 (Hart et al. 2017b).
This makes any model difficult to constrain due to a large
scatter introduced by the errors in the measurements. Addi-
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Figure 7. Cumulative fractions of observed (grey filled his-
tograms) and predicted spiral arm pitch angles (stepped his-

tograms) for (a) the SDSS sample and (b) the SDSS+Hi sample.

The dashed orange line and the solid blue line show the distribu-
tions of pitch angles from the model using Hernquist and Burkert

dark matter profiles respectively, convolved with a Gaussian error

of 7. The dotted orange and blue lines indicate the same distri-
butions, with a random scatter downwards of 0-10. This scatter

makes the predicted pitch angles match the real distribution more

closely.

tionally, the age of the spiral arms appears to have an effect
– if spiral arms do wind up over time, as the evidence here
suggests, then this will introduce an unwanted, difficult to
quantify scatter in the true pitch angles of spiral galaxies.

4.3 The disc fraction-arm number relation

From the formalism described in Sec. 3, the predicted spi-
ral arm number is expected to have a strong dependence on
the relative sizes and masses of haloes, bulges and discs.
Of particular note is the relation with the disc fraction:
many simulations predict a strong correlation of m ∝ f −1

d ,
where fd is the disc fraction within 2.2 times the disc
scale length (Carlberg & Freedman 1985; Bottema 2003;
Fujii et al. 2011; D’Onghia et al. 2013). Such a relation is
unsurprising, given the functional form of Eq. 8. The equa-
tion has terms predicting m ∝ Mb/Md and m ∝ Mh/Md; the
only complications are the other dependencies on the relative
sizes of the components. In Fig. 8, the relation for each of
the sub samples is shown. Here we see the expected relation-
ship of mpredicted ∝ f −1

d . The scatter is very small, meaning
the relationship is dominated by the mass fractions, rather
than the relative sizes of the components. We also see an-
other trend that the relationship depends not only on fd,
but the shape of the dark matter profile also plays a role:
the Burkert profile, which has a flat inner region, leads to a
lower predicted spiral arm number for a given disc fraction
as well as larger disc fractions.

4.4 Predicting spiral arm numbers in galaxies

Given that the modal spiral arm theory does seem able to
predict reasonable spiral arm number distributions, given
a cored dark matter profile, we will now investigate how

well the theory predicts spiral arm numbers in individual
galaxies. If the modal theory is indeed accurate, we expect
to see a strong correlation between the observed spiral arm
numbers and those predicted by Eq. 8.

As a first test, we check the predicted spiral arm num-
bers for the S4G sample. This sample is observed in the near
infra-red, so the spiral arms we see here should correspond to
the underlying mass distributions of the spiral galaxies. For
validation of our SDSS results, we use the already published
arm classifications for the S4G galaxies from Buta et al.
(2015). Galaxies are classified by their Elmegreen arm-type,
as either grand design, many-arm or flocculent. Grand de-
sign (G) spiral galaxies are characterised by their strong two-
arm structure, whereas many-arm (M) spirals instead have
more than two spiral arms, and flocculent (F) spiral galax-
ies have more, broken, patchy spiral arms than many-arm
galaxies (Elmegreen & Elmegreen 1982). From these argu-
ments, we expect the grand design spiral galaxies to have
the fewest predicted spiral arms, and the flocculent galaxies
to have the most predicted spiral arms. In Fig. 9, the median
predicted spiral arm number is shown for each of the spiral
arm subcategories. There is a weak trend for exactly what
we expect: the flocculent spirals do have the most predicted
spiral arms, with mpredicted = 9.1± 1.2. There is, however, lit-
tle difference between the grand design and many-arm spiral
categories with mpredicted = 4.6 ± 0.5 and 5.3 ± 0.3. We also
see evidence that a cored Burkert dark matter halo profile
cannot reproduce the variability in spiral structure between
spiral galaxies – in all cases, the predicted spiral arm number
is ∼ 2.

For the SDSS sample, we have direct measurements of
spiral arm numbers from the GZ2 classifications of spiral
galaxies. Rather than asking questions to describe the spiral
arm type, Galaxy Zoo volunteers instead classified the num-
ber of spiral arms they could observe in the optical image.
We use the average arm number mavg to describe the spiral
arm number for each galaxy. The number of spiral arms ob-
served for the SDSS and SDSS+Hi vs. the number of spiral
arms predicted for those same galaxies are shown in Fig. 10.
Here, there is no evidence that the optically classified spi-
ral arm number has any relation to the number of spiral
arms predicted. This is the case for the cusped Hernquist
and cored Burkert profiles, with and without the disc gas
mass being included in the prediction. We observe no strong
correlation between the predicted and observed spiral arm
numbers, with |rs | ≤ 0.1 in each case.

4.5 Varying the dark matter halo

Neither a cored or cusped halo can produce the variety of
spiral arm morphologies in local galaxies from grand de-
sign to many-arm structures for our samples. This does
not necessarily mean spiral arms are not swing ampli-
fied modes; instead, the dark matter halo may exhibit
strong differences from galaxy to galaxy. In fact, the ra-
dial profiles of dark matter haloes have been shown to
vary greatly from galaxy to galaxy, with earlier type mas-
sive ellipticals having cuspier profiles (Dutton et al. 2013;
Dutton & Macciò 2014; Sonnenfeld et al. 2015), and later
type, low surface brightness systems having flatter in-
ner dark matter profiles (de Blok et al. 2001; Swaters et al.
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sample. The orange filled contours show the predictions for the Hernquist halo and the blue lined contours show the predictions for the

Burkert halo. The contour lines show where 20, 40, 60 and 80 per cent of the data lie for each sample. The flatter inner profile leads to

fewer predicted arms for a given disc fraction.
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Figure 9. Predicted spiral arm numbers for S4G grand design

(G), many-arm (M) and flocculent (F) spirals. The orange dashed
line shows the median spiral arm number for the Hernquist dark

matter halo, and the solid blue line shows the same value for the

Burkert dark matter halo. The error bars indicate one standard
error on the median for each sub sample.

2003; Goerdt et al. 2006), with some level of interpolation
in between (Dutton et al. 2016).

With the mathematics formulated in Sec. 2.3 and
Sec. 3.1, we can interpolate between the Burkert (cored)
and Hernquist (cusped) dark matter profiles. Models of dark
matter haloes usually describe the profile shape in terms of
halo contraction. Contracted haloes have less mass in their
inner regions, and more in their outer regions, with star-
formation feedback often cited as the cause of such a change
(Navarro et al. 1996; Oh et al. 2011; Katz et al. 2017). In
our model, we are principally concerned with the inner re-
gion of the halo. We can mimic the halo contraction in the
inner region by varying the shape of the halo as described
in Sec. 2.3.1.

In order to address the issue of whether an interpolated
halo can reproduce the predictions of swing amplified spiral
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Figure 10. Spiral arm number measured from GZ2 mavg vs. spiral

arm number predicted from the galaxy model. The orange lines
show the models with a Hernquist dark matter halo, and the blue

lines show the models with a Burkert dark matter halo profile.

The solid lines show the SDSS samples, and the dashed lines
show the SDSS+Hi samples. The points show the median and

the error bars indicate one standard error on the median. There
is no clear correlation to confirm that the model can predict spiral

arm numbers accurately with either a cusped or cored halo.

arms, we can ask the question of what value of α (a proxy for
the contraction in the inner regions) our haloes need to be
in order for a model to match perfectly. That Eq. 8 can be
split into multiple parts allows for easy manipulation when
we consider our superimposed hybrid dark matter haloes
described in Sec. 2.3.1. The equations become:

m(r) = mb(r) + md(r) + (1 + α)mh,B(r) (α < 0)

m(r) = mb(r) + md(r) + (1 − α)mh,B(r) + αmh,H(r) (0 ≤ α ≤ 1)

m(r) = mb(r) + md(r) + αmh,H(r) (α > 1),

(11)

where mh,H and mh,B are the Hernquist and Burkert halo arm
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Figure 11. Values of halo expansion parameter required to repro-

duce the spiral arm numbers from GZ2. The green filled histogram
shows the SDSS+Hi sample and the purple stepped histogram

shows the SDSS sample. A significant fraction of both popula-

tions cannot be explained by swing amplification, even with a
dark matter halo set to Mh = 0.

numbers. We now have a set of inferred dark matter halo
profile shapes, α, based on each galaxy’s measured bulge
and disc properties, observed spiral arm number, and the
assumption of the swing amplification model. Dark matter
halo expansion is often quantified as the mass of the halo in-
side a given radius when baryonic processes have been taken
into account divided by the mass the halo would have if only
dark matter were present (e.g. Dutton et al. 2016). To this
end, we define the following to estimate the same quantity:

εhalo = log(Mhalo[0.01R200]/Mhernquist[0.01R200]), (12)

where Mhalo is the mass of a given halo constructed from
the superposition of the Hernquist and Burkert profile as
described in Sec. 2.3.1, and Mhernquist is the mass of the
Hernquist halo of the same mass and size. The Hernquist
halo should approximate a dark matter only halo, given
that dark matter simulations predict cuspy NFW-like haloes
(Navarro, Frenk & White 1996, 1997).

For each galaxy, we calculate the mass of the modi-
fied halo that gives the correct arm number vs. the mass
of the halo one would expect if there were no baryonic pro-
cesses affecting the halo. The distributions of the required
εhalo values are shown in Fig. 11. Only galaxies with phys-
ical dark matter haloes are included in this distribution –
these are galaxies with α > −1, and make up 3157/7611
of the SDSS galaxies (41.5 per cent) and 2489/5696 of the
SDSS+Hi galaxies (43.7 per cent). For the remaining ≈ 60
per cent of the galaxies, the spiral arm number from the disc
and bulge is greater then the observed spiral arm number;
even in the extreme case where there is no dark matter halo
contribution, the predictions cannot match the observations.
Their origin is therefore unlikely to be swing amplification.
These are usually galaxies with low spiral arm numbers: 71.3
per cent of these galaxies have spiral arm numbers of m = 1
or m = 2 according to GZ2. For the galaxies that may have
swing amplified arms (α > −1), this value is just 25.2 per
cent.

To test whether these α parameters derived directly
from observed quantities are reasonable, we compare them
to results from simulations. The dark matter only halo mass,
MDMO, is taken as simply the mass of the Hernquist halo.

The mass of the halo required, Mh,req, is the mass of the in-
terpolated halo. Recent simulations have predicted that the
size of the dark matter halo depends on a number of param-
eters related to the host galaxy (Di Cintio et al. 2014a,b).
Notably, Dutton et al. (2016) simulated a range of galaxies
with the NIHAO simulation suite, finding clear correlations
between galaxy star formation efficiency, stellar mass and
halo mass and the dark matter halo contraction. They also
published a relationship between galaxy size, halo size and
the halo contraction of the following form:

log(M0.01
hydro/M

0.01
DMO) = −0.28(±0.11)

− 1.52(±0.42)(log(R1/2/R200) + 1.68),

(13)

where Mhydro is the mass of the dark matter halo simu-
lated with baryonic processes and R1/2 is the galaxy half
mass radius. The superscripts 0.01 denote the mass within
0.01R200, the central part of the halo where there is signif-
icant baryonic mass content: the term log(M0.01

hydro/M
0.01
DMO) is

therefore directly replaceable with our εhalo term. This cor-
relation is used as a direct comparison for the data in this
paper. The calculated dark matter halo contraction param-
eter vs. galaxy half light radius for both the SDSS and the
SDSS+Hi samples are shown in Fig. 12. The dashed line de-
fined by Eq. 13 is also shown for reference. The majority of
the galaxies lie to the right of R1/2/R200 = 2, which is where
the efficiently star-forming NIHAO disc galaxies lie, which
is expected given that we consider star-forming spiral galax-
ies. Here, an interesting result emerges – galaxies which have
physical α values (α ≥ −1) require dark matter haloes very
similar to the ones which the Dutton et al. (2016) simula-
tions predict. The inclusion of a gas component also appears
to bring the overall distributions closer to where one would
expect the spiral galaxy sample in this paper to lie. There
also appears to be a negative correlation between halo ex-
pansion and baryonic-to-halo size in both cases, as indicated
by the solid black line in each panel, in agreement with the
NIHAO simulation.

Given that these galaxies lie so close to the line defined
by the NIHAO simulation, we test whether this relationship
between galaxy size and flattened profile can produce arm
numbers that one would expect if swing amplification was re-
sponsible for spiral arms. For all of the galaxies with physical
α values, we contract or expand the haloes to match the pre-
scription of Eq. 13. From these haloes, we again calculate the
expected spiral arm number for the SDSS and the SDSS+Hi
samples. The plot comparing predicted vs. observed spiral
arm number is shown in Fig. 13. From the resulting plot,
we see a remarkable correlation: galaxies where one would
expect to see more spiral arms do indeed have more arms. If
the model were to work perfectly, then these galaxies would
lie on the one-to-one line shown by the solid black line of
Fig. 13. Instead, the SDSS sample lies ∼3 spiral arm num-
bers too high, but with a strong correlation of rs = 0.21. If
we include the Hi component in the disc, the model predicts
spiral arm numbers more accurately, with the systematic
offset reduced to ∼2 spiral arms, with a similar strength of
correlation with rs = 0.23. The swing amplified model can
predict a key observable, albeit with a systematic offset. The
source or sources of this offset are discussed in more detail
in Sec. 5.
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Figure 12. Mass of the halo calculated from the swing amplification model divided by the mass of a cuspy Hernquist dark matter halo

inside 0.01R200. (a) shows the SDSS sample and (b) shows the SDSS+Hi sample. The contours enclose 20, 40, 60 and 80 per cent of the

data points in each panel. Galaxies with physical (α ≥ −1) haloes lie in the region where one would expect to observe them if their spiral
arms are swing amplified modes. The dashed lines show the prediction for the halo expansion/contraction from NIHAO (Dutton et al.

2016). The black points joined by a solid line show the median and the error bars indicate one standard error on the median.
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Figure 13. Observed spiral arm number from GZ2 (mavg) vs.
predicted spiral arm number for the SDSS and SDSS+Hi samples
with haloes contracted or extended according to Eq. 13. The thick
black line indicates the expected one-to-one correlation, and the

dashed black lines show the same correlation offset by two spiral
arms. Using this prescription for the dark matter halo, a key

prediction from swing amplification emerges, suggesting that a
fraction of the galaxies with realistic α values are swing amplified.

5 DISCUSSION

By drawing on a number of observational measurements and
models for dark matter haloes, we have investigated whether

predictions of swing amplification theory can predict mor-
phological characteristics of spiral arms in galaxies. Neither
universal cusped or cored haloes can predict the spiral arm
numbers or pitch angles in galaxies accurately. However,
by invoking a halo which is contracted or expanded by an
amount dependent on the relative size of its baryonic con-
tent, there is a population of galaxies for which our predicted
spiral arm numbers correlate strongly with those observed.

5.1 Can the model produce realistic spiral arms?

In the local Universe, the varieties of spiral structure and
their relative fractions are well constrained. The majority
of spirals tend to have grand design arms – both infra-red
and optical studies show that ≈ 60 per cent of unbarred, low-
redshift spirals with stellar mass log(M� ) & 10 have two-arm
or grand design spiral structure (Elmegreen & Elmegreen
1982; Grosbøl et al. 2004; Hart et al. 2016). In Sec. 4.1,
we demonstrated a familiar problem with the simulations
of swing amplified spiral galaxies. These models produced
galaxies with too many spiral arms, with median arm num-
ber of ∼10 spiral arms for the SDSS sample. The inclusion
of the Hi component to add to the galaxy disc mass does
improve the situation somewhat, reducing the median spi-
ral arm number to ∼6. This picture is still unsatisfactory
in terms of describing the spiral arms in our galaxy sam-
ple. Although an extra gas component can reduce the spiral
arm number, it still cannot reproduce the dominant two-arm
spiral population we expect to see. The other complicating
factor is the role that gas plays in the disc. The swing ampli-
fied quantities described in this paper are based on N-body
simulations – the discs consist of many stellar particles, and
their self-gravity form spiral arms in galaxies. The role that
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a gas component will play is not fully understood. The inclu-
sion of a gas component can help to stabilise the two-arm
mode (Bournaud & Combes 2002) and make swing ampli-
fication more efficient (Jog 1992, 1993). Gas has also been
suggested as a requirement to cool the stellar system in order
for it to be unstable to arm formation (Sellwood 1985).

In order to produce a modal galaxy population which
produces a reasonable number of unbarred two-arm modes,
we require that the dark matter halo potential in the inner
regions is significantly reduced. In Sec. 4.1 we showed that
the swing amplification mechanism can produce a spiral pop-
ulation with more prominent lower order modes if the dark
matter halo is cored to the extent that it is flat within ah.
Both the SDSS and SDSS+Hi models produce spiral arms
representative of those at low-redshift. This does, however,
produce its own complications. Of greatest concern is how
stable such low-order modes are. Currently, N-body sim-
ulations cannot produce long-lived m = 2 spirals without
quickly forming a central bar (Athanassoula 2002; Sellwood
2011; Dobbs & Baba 2014). Additionally, these modes do
not predict a correlation between predicted and observed
spiral arm numbers. Rather, the dominant mode is usually
driven down to ∼2 in almost all spiral galaxies: a cored dark
matter halo cannot predict the range of spiral arm numbers
observed in low-redshift galaxies.

In order to reproduce realistic spiral arms, we have
found that a halo with some level of interpolation between
a cored and cusped dark matter halo is required. In order
for the model to match the observations, most galaxies need
some level of halo expansion. Such a result should not be
surprising, however – recent work suggests that low-redshift
disc galaxies require strongly cored inner profiles in order to
fit rotation curves (Cole & Binney 2017; Katz et al. 2017).

Examining these required halo sizes leads one to the
conclusion that there are two distinct populations of galax-
ies. Of all of the galaxies, only ∼ 40 per cent can be modelled
by swing amplification with any kind of dark matter halo.
Remarkably, these galaxies show a strong correlation be-
tween the spiral arm numbers expected and those observed.
This leads us to conclude that swing amplification does play
a dominant role in generating spiral structure in around half
of unbarred disc galaxies. The secondary population is dis-
cussed in more detail in Sec. 5.1.2.

Although a correlation does exist, it is offset from the
one-to-one line that one would expect, overestimating the
number of spiral arms by approximately three. This may
be due to how mass is assigned to the bulge and disc. We
use photometric decompositions of Simard et al. (2011) and
Mendel et al. (2014) to assign mass to the bulge and the
disc. Such a model fits a classical bulge with n = 4 and an
exponential disc. This may cause a systematic for two rea-
sons. Firstly, the photometric decomposition of galaxies may
introduce a bias due to image resolution effects. The second
issue is the pseudo vs. classical bulge argument – the model
we use assumes an inner classical spherical bulge; bulges
instead may be pseudo-bulges, which may not have a spher-
ical shape, and profile well-described by a spherical Hern-
quist profile (Carollo et al. 1997; Gadotti & dos Anjos 2001;
Kormendy et al. 2006; Fisher & Drory 2008; Gadotti 2009).
Studying bulges and discs in detail is beyond the scope of
this paper. Another possibility is that the assumption that
spiral arms are measured at 2Rd may not be valid – if spi-

ral arms were instead measured closer to the inner regions
of galaxies, then this offset is negated. Unfortunately, the
binary nature of visual morphological classifications, where
arms either are or are not recorded, prevents further investi-
gation of this point. Finally, there may be some spiral arms
which are impossible to observe with visual morphology in
the way presented in this paper. Of particular note is the
case where the model predicts very high spiral arm numbers.
In this case, the spiral arms may instead be wakelets which
are difficult to observe visually; our observed arm number
measurements may therefore be systematically low for these
galaxies. Investigating which caveat, or which combination
of caveats is responsible requires higher resolution imaging
of galaxies than those used in this paper. Any study of this
nature would be severely restricted in terms of sample size
and completeness compared to the results we present in this
paper.

Another potential source of systematic uncertainty is
the model we use to contract/expand the dark matter
halo. We use a recently-published prediction from a full-
hydrodynamical code in NIHAO (Wang et al. 2015) to com-
pare our model to predictions. However, there are a number
of parameters that go into such a code – the expansion of
dark matter cores is usually driven by gas outflows caused
by feedback from stars and supernovae (Read & Gilmore
2005; Governato et al. 2010; Pontzen & Governato 2012;
Chan et al. 2015). Small adjustments to the strength of this
feedback would theoretically cause haloes to expand more if
the other properties of galaxies were kept the same. How-
ever, testing these effects is not the purpose of this paper.

5.1.1 A note on disc maximality

In a number of simulations, it has been shown that the spiral
arm number has a dependence on the disc fraction within 2.2
disc scale radii, 2.2Rd, which takes the functional form m ∝
f −1
d (Carlberg & Freedman 1985; Bottema 2003; Fujii et al.

2011; D’Onghia et al. 2013). We therefore expect galaxies
with greater disc fractions to have fewer spiral arms.

Maximal discs are usually defined as discs with
fd(2.2Rd) > 0.7. Disc maximality has been a subject of much
debate, and often depends on the technique one uses to mea-
sure it (Bosma 2017). Recent work based on velocity dis-
persion measurements of disc galaxies suggests that discs
may be sub-maximal (Bottema 1993; Kregel et al. 2005;
Bershady et al. 2011). A recent study that should be directly
comparable to our work is that of Martinsson et al. (2013),
where a set of low-redshift spiral galaxies were decomposed
into bulge and disc components, meaning the disc contribu-
tion was directly measured with little or no bulge contami-
nation. This study also found discs to be sub-maximal, with
fd(2.2Rd) = 0.31 ± 0.07. However, other recent studies in-
stead suggest that discs may indeed be more maximal than
these kinematic studies would suggest. Velocity dispersion-
based techniques rely on estimates of both the velocity dis-
persion and the disc scale height, which are often probed
by different stellar populations (Bosma 1999; Aniyan et al.
2016; Bosma 2017; Aniyan et al. 2018). Aniyan et al. (2016)
demonstrated that accounting for these systematic differ-
ences leads one to conclude that the Milky Way’s disc is max-
imal, in agreement with measurements of the Milky Way’s
rotation curve from Bovy & Rix (2013).
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Athanassoula et al. (1987) showed that for swing ampli-
fied spiral arms to exist in a sample of nearby spirals, then
a maximal disc is required to match the observed spiral arm
numbers. We can see from Fig. 2 that cored inner profiles
mean that discs are close to maximal in nature, particularly
if one considers the Hi component in the SDSS galaxies. The
work presented in this paper supports this idea that spiral
arms can be maintained via a swing amplified mechanism,
if the inner profiles of galaxies are cored to the extent of,
or perhaps even more so than the relation given by the NI-
HAO prediction of Dutton et al. (2016). If we assume that
all of the galaxies which have realistic dark matter haloes
described in Sec. 4.5 exist via the swing amplified mech-
anism, then we obtain fd = 0.48+0.11

−0.17 (0.54+0.11
−0.15 with the

inclusion of Hi; the value quoted is the median, and the
bounds indicate the 16th and 84th percentiles). The predic-
tions using the NIHAO simulations, which generally give too
many spiral arms, give fd = 0.21+0.11

−0.19 (0.25+0.19
−0.08). In order

for our spirals to be swing amplified modes, our discs must
be more maximal than the sub-maximal values measured in
Martinsson et al. (2013).

5.1.2 A bimodality in the galaxy population

Given the evidence listed above, most spiral galaxies may
not exist as swing amplified modes. Approximately 60 per
cent of the galaxies in our sample do not fit the expected
characteristics from swing amplification theory. We demon-
strated that this sub-population cannot exist with the model
we use in this paper – even if there is no massive dark mat-
ter component, the spiral arm numbers predicted are still
greater than those observed. A likely scenario is that spiral
arms can be triggered and exist via a multitude of mecha-
nisms, and that the model presented in this paper is only
applicable to a select sample of galaxies.

One mechanism that can generate spiral structure is
the presence of bars. However, in this paper, we explicitly
control for this by removing any galaxies with even weak
bars in the various samples using visual galaxy classifica-
tions. However, we cannot rule out the other often quoted
mechanisms for driving spiral arms: density wave theory and
tidal interactions. Density wave theory (Lin & Shu 1964) is
a mechanism via which two-arm spiral patterns can emerge,
while simulations also predict that galaxy-galaxy interac-
tions can effectively trigger the formation of two-arm pat-
terns (Toomre & Toomre 1972; Oh et al. 2008; Dobbs et al.
2010). A second population of spiral galaxies completely sep-
arate from the swing amplified spirals also goes a long way
to explain the results of many of the simulations to date.
As yet, there are no simulations that predict long-lived,
stable two-arm patterns in simulations of isolated galaxy
discs (Dobbs & Baba 2014). That two-arm spirals form a
secondary population triggered in another way would sug-
gest that the models are correct in that they do not predict
two-arm patterns, and that inclusion of other physical pa-
rameters will not affect this result in future simulations.

5.2 Arm number and pitch angle as tracers of
swing amplification

We have the option to test the modal mechanisms of spiral
structure using either pitch angle, arm number or a combi-

nation of both. We note that we expect our measured pitch
angles to be less certain than the measures of spiral arm
number, given that they require an accurate measurement on
each individual galaxy compared to simply counting arms.
We therefore suggest that the spiral arm number is the best
technique for testing and calibrating any models of spiral
galaxies. The different effectivenesses of pitch angle and arm
number as tracers of swing amplification appears to be due
to what they probe in the model. From Eq. 8, we see that
spiral arm number is a result of the relative sizes and masses
of the components that make up galaxies. However, pitch an-
gle probes something altogether more subtle. The shear in
galaxy discs probes the gradients of the mass distribution
inside galaxies. With the models employed in this paper, all
galaxies tend to have flat rotation curves, consistent with ob-
servations of the overall galaxy population. Without direct
measurements of the galaxy dynamics from accurate galaxy
rotation curve data, one cannot model the subtle differences
that lead to large variations in pitch angles.

The spiral arm pitch angle distributions of our spiral
galaxy populations were compared in Sec. 4.2. The galaxy
model we use in this paper leads to the majority of spirals
having arms centred around ψ = 24. As was the case for the
spiral arm number, the pitch angle is a quantity that we can
constrain from observations of local galaxies. We used two
complementary datasets to test how well the swing ampli-
fied predictions match the observations of local spirals. The
S4G sample was measured directly from mid infra-red imag-
ing by hand by professional astronomers; the SDSS pitch
angles were instead measured automatically, a method we
tested the reliability of in Hart et al. (2017b). We see that
both samples give distributions centred on ∼ 19 with spiral
arms ranging from 5-40. These are both similar to the pitch
angle distributions measured in other samples, indicating
that these pitch angle distributions seem to be character-
istic of the total galaxy population (Seigar & James 1998;
Block & Puerari 1999; Seigar 2005; Seigar et al. 2008). We
see that neither dark matter halo can produce the correct
distribution of spiral arm pitch angles: the distributions are
too loose. We interpret this as evidence that spiral arm pitch
angle depends on a number of different properties, rather
than simply the underlying mass distribution in a swing am-
plification regime. The fact that the spiral arms are tighter
than those predicted is also of interest, given the predic-
tions for how spiral arms should evolve over time. Generally,
spiral arms produced in a swing amplified N-body regime
will tighten as the galaxy rotates (Pérez-Villegas et al. 2012;
Grand et al. 2013). It could potentially be the case that
new spiral arms will form at ψ = 24, and age to produce
the tighter distribution we observe in our galaxies. For our
sample, a scatter introduced by this effect resolves the dif-
ferences between the distributions of observed and predicted
spiral arm numbers. Accurately estimating the age of a spiral
arm would, however, be very challenging. Given the above
caveats, spiral arm number was a much better method for
testing the predictions of swing amplification, and was thus
employed for the rest of this paper.
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6 CONCLUSIONS

In this paper, we have compared direct predictions from a
model of swing amplified spiral arm characteristics to those
observed. By drawing on a number of measured data, and
well-defined scaling relations where these are unavailable, we
model a sample of galaxies from both the SDSS and the S4G
surveys. We find that using a simple cored or cusped profile
to model the dark matter cannot account for the majority of
spiral arms – cusped profiles predict too many arms, whereas
cored profiles cannot predict the complete variation in spi-
ral structure across the galaxy population. However, by in-
cluding a dark matter profile with some level of expansion,
as predicted by simulations due to halo expansion caused
by feedback from star formation, a significant agreement
emerges – approximately half of galaxies have spiral arms
consistent with the model we employ in this paper. These
display a significant correlation between predicted and ob-
served spiral arm number. The rest of the unbarred spiral
population is unlikely to be dominated by a swing ampli-
fied arms, and are instead more likely to be due to tidal
interactions or density waves.
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APPENDIX A: THE BURKERT DARK
MATTER PROFILE

In Sec. 2.3, a Burkert dark matter halo was discussed to
model the dark matter halo of spiral galaxies. The Burk-
ert profile (Burkert 1995) is characterised by the following
function:

ρ = ρ0
r3

0

(r + r0)(r2 + r2
0 )
, (A1)

where ρ0 is the central density of the dark matter halo, r0 is
the scale length and r is the radius. We define the following
quantity to make the equations appear a little simpler:

φ(r,r0) = ln
( r + r0

r0

)
+

1
2

ln
( r2 + r2

0

r2
0

)
− arctan

( r
r0

)
. (A2)

The mass enclosed within a sphere of radius r is given by

M(r) = 2πρ0r3
0φ(r,r0). (A3)

The central density, ρ0, can be calculated from the mass
of the halo at r200, where r200 is the radius where the halo
density falls to 200 times the critical density of the Universe.
By rearranging Eq. A3, the central density is

ρ0 =
M200

2πr3
0φ(r200,r)

, (A4)

where M200 is the halo mass at r200. The angular frequency
of the halo is

Ω
2(r) = 2πGρ0r3

0
φ(r,r0)

r3 . (A5)

The spiral arm number is given by Eq. 1 of D’Onghia (2015):

m =
κ2

2πGΣ
R
X
, (A6)

where Σ is the surface density of the stellar disc and X is a
factor introduced in Toomre (1981) which is most effective
at X = 1.5 − 2 (D’Onghia et al. 2013). κ2 is given by

κ2 = r
dΩ2

dr
+ 4Ω2. (A7)

For the Burkert profile, this becomes

κ2 =
2πGρ0r3

0

r3

[ r2

r2 + r2
0

−
r

r0(r2/r2
0 + 1)

+
r

r + r0
+φ(r,r0)

]
. (A8)

Putting together Eq. A6 and Eq. A8 yields the following re-
lation for spiral arm number with respect to the dark matter
halo:

mh =
e2y

X

πρ0r3
0

Md

y2

2

[ r2

r2 + r2
0

−
r

r0(r2/r2
0 + 1)

+
r

r + r0
+φ(r,r0)

]
.

(A9)

This now replaces the halo term in Eq. 8 so that m can
be calculated for the Burkert dark matter halo.
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Figure B1. (a) Modal value of response to the bulge prominence

question in GZ2, B, vs. fraction of discs classified with only a
disc (black circle points with a thin line) and median F-test value

(red squares with a thicker dashed line). (b) As in (a), but using

the continuous average bulge prominence statistic, Bavg. We see
a strong correlation that galaxies with less prominent bulges in

GZ2 are more likely to be fit with a single disc component in

Simard et al. (2011).

APPENDIX B: THE USE OF ONE OR TWO
COMPONENT FITS

We use already derived bulge and disc mass estimates from
Simard et al. (2011) and Mendel et al. (2014) as parame-
ters in our galaxy model. The Mendel et al. (2014) catalogue
usually fits galaxies with two components, but also includes
single fit models. The catalogue provides a statistic, the F-
test statistic, to determine which model is more appropriate.
The paper also advises that this statistic is not perfect, and
arguments from what is expected from the physical proper-
ties of galaxies should instead be used if possible. We do,
however, want to avoid the fitting of a bulge+disc to a sys-
tem where the galaxy has little or no bulge. The reliability of
galaxy bulge size measurements have already been shown to
correlate well with visually characterised bulge prominence
statistic (Masters et al. in prep.). In order to check whether
the F-test statistic can reliably identify bulge-less systems,
we use the same visual statistic. We define the bulge promi-
nence using the ‘is there any sign of a bulge?’ question in
GZ2. We define Bavg in the same way as Masters et al. in
prep.:

Bavg = 0.0pno bulge+0.2 · pnoticeable+0.8 · pobvious+1.0 · pdominant,

(B1)

and the statistic B which corresponds to which response
to the bulge prominence question got the most votes. In
Fig. B1, we check how both the median F-test statistic and
the fraction of galaxies with F < 0.32, fdisc only, change with
GZ2 bulge prominence. Here we see a strong correlation
(rs (Bavg, fdisc only) = −0.41) between the two statistics, mean-
ing that galaxies with a higher probability of having no bulge
from the GZ2 statistics are much more likely to require the
single component model. We therefore use the F-test statis-
tic to define whether we use a bulge+disc or disc only model
for our SDSS galaxies.
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