206 research outputs found
Supplemented Alkaline Phosphatase Supports the Immune Response in Patients Undergoing Cardiac Surgery: Clinical and Computational Evidence
Alkaline phosphatase (AP) is an enzyme that exhibits anti-inflammatory effects by dephosphorylating inflammation triggering moieties (ITMs) like bacterial lipopolysaccharides and extracellular nucleotides. AP administration aims to prevent and treat peri- and post-surgical ischemia reperfusion injury in cardiothoracic surgery patients. Recent studies reported that intravenous bolus administration and continuous infusion of AP in patients undergoing coronary artery bypass grafting with cardiac valve surgery induce an increased release of liver-type âtissue non-specific alkaline phosphataseâ (TNAP) into the bloodstream. The release of liver-type TNAP into circulation could be the body's way of strengthening its defense against a massive ischemic insult. However, the underlying mechanism behind the induction of TNAP is still unclear. To obtain a deeper insight into the role of AP during surgery, we developed a mathematical model of systemic inflammation that clarifies the relation between supplemented AP and TNAP and describes a plausible induction mechanism of TNAP in patients undergoing cardiothoracic surgery. The model was validated against clinical data from patients treated with bovine Intestinal AP (bIAP treatment) or without AP (placebo treatment), in addition to standard care procedures. We performed additional in-silico experiments adding a secondary source of ITMs after surgery, as observed in some patients with complications, and predicted the response to different AP treatment regimens. Our results show a strong protective effect of supplemented AP for patients with complications. The model provides evidence of the existence of an induction mechanism of liver-type tissue non-specific alkaline phosphatase, triggered by the supplementation of AP in patients undergoing cardiac surgery. To the best of our knowledge this is the first time that a quantitative and validated numerical model of systemic inflammation under clinical treatment conditions is presented
OpenGraphGym: A Parallel Reinforcement Learning Framework for Graph Optimization Problems
This paper presents an open-source, parallel AI environment (named OpenGraphGym) to facilitate the application of reinforcement learning (RL) algorithms to address combinatorial graph optimization problems. This environment incorporates a basic deep reinforcement learning method, and several graph embeddings to capture graph features, it also allows users to rapidly plug in and test new RL algorithms and graph embeddings for graph optimization problems. This new open-source RL framework is targeted at achieving both high performance and high quality of the computed graph solutions. This RL framework forms the foundation of several ongoing research directions, including 1) benchmark works on different RL algorithms and embedding methods for classic graph problems; 2) advanced parallel strategies for extreme-scale graph computations, as well as 3) performance evaluation on real-world graph solutions
Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome
The IFAP syndrome is a rare X-linked genetic disorder reported in nearly 40 patients. It is characterized by the triad of Ichthyosis Follicularis, Alopecia, and Photophobia from birth. Other features such as short stature, intellectual disability, and seizures may develop in the first few years of life. Skin histopathology is non-specific and consists of dilated hair follicles with keratin plugs extending above the surface of the skin, decreased or absent sebaceous glands, and decreased desmosomes in number and size. The disorder results from mutations in the MBTPS2 gene that impairs cholesterol homeostasis and the ability to cope with endoplasmic reticulum stress. Follicular hyperkeratosis can be treated using topical keratolytics, emollients and urea preparations. A moderate response to acitretin therapy has been noted in some patients. Intensive lubrication of the ocular surface is essential. Life expectancy in patients with IFAP syndrome can vary from death in the neonatal period to normal surviving. Cardiopulmonary complications remain the major cause of death
Comparison of HIV-1 Genotypic Resistance Test Interpretation Systems in Predicting Virological Outcomes Over Time
Background: Several decision support systems have been developed to interpret HIV-1 drug resistance genotyping results. This study compares the ability of the most commonly used systems (ANRS, Rega, and Stanford's HIVdb) to predict virological outcome at 12, 24, and 48 weeks. Methodology/Principal Findings: Included were 3763 treatment-change episodes (TCEs) for which a HIV-1 genotype was available at the time of changing treatment with at least one follow-up viral load measurement. Genotypic susceptibility scores for the active regimens were calculated using scores defined by each interpretation system. Using logistic regression, we determined the association between the genotypic susceptibility score and proportion of TCEs having an undetectable viral load (<50 copies/ml) at 12 (8-16) weeks (2152 TCEs), 24 (16-32) weeks (2570 TCEs), and 48 (44-52) weeks (1083 TCEs). The Area under the ROC curve was calculated using a 10-fold cross-validation to compare the different interpretation systems regarding the sensitivity and specificity for predicting undetectable viral load. The mean genotypic susceptibility score of the systems was slightly smaller for HIVdb, with 1.92±1.17, compared to Rega and ANRS, with 2.22±1.09 and 2.23±1.05, respectively. However, similar odds ratio's were found for the association between each-unit increase in genotypic susceptibility score and undetectable viral load at week 12; 1.6 [95% confidence interval 1.5-1.7] for HIVdb, 1.7 [1.5-1.8] for ANRS, and 1.7 [1.9-1.6] for Rega. Odds ratio's increased over time, but remained comparable (odds ratio's ranging between 1.9-2.1 at 24 weeks and 1.9-2.
HIV Reservoirs and Immune Surveillance Evasion Cause the Failure of Structured Treatment Interruptions: A Computational Study
Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models
The diminishing role of hubs in dynamical processes on complex networks
It is notoriously difficult to predict the behaviour of a complex
self-organizing system, where the interactions among dynamical units form a
heterogeneous topology. Even if the dynamics of each microscopic unit is known,
a real understanding of their contributions to the macroscopic system behaviour
is still lacking. Here we develop information-theoretical methods to
distinguish the contribution of each individual unit to the collective
out-of-equilibrium dynamics. We show that for a system of units connected by a
network of interaction potentials with an arbitrary degree distribution, highly
connected units have less impact on the system dynamics as compared to
intermediately connected units. In an equilibrium setting, the hubs are often
found to dictate the long-term behaviour. However, we find both analytically
and experimentally that the instantaneous states of these units have a
short-lasting effect on the state trajectory of the entire system. We present
qualitative evidence of this phenomenon from empirical findings about a social
network of product recommendations, a protein-protein interaction network, and
a neural network, suggesting that it might indeed be a widespread property in
nature.Comment: Published versio
- âŠ