
OpenGraphGym: A Parallel
Reinforcement Learning Framework
for Graph Optimization Problems

Weijian Zheng1 , Dali Wang2(B) , and Fengguang Song1

1 Indiana University-Purdue University, Indianapolis, IN 46202, USA
zheng273@purdue.edu, fgsong@iupui.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
wangd@ornl.gov

Abstract. This paper presents an open-source, parallel AI environment
(named OpenGraphGym) to facilitate the application of reinforcement
learning (RL) algorithms to address combinatorial graph optimization
problems. This environment incorporates a basic deep reinforcement
learning method, and several graph embeddings to capture graph fea-
tures, it also allows users to rapidly plug in and test new RL algorithms
and graph embeddings for graph optimization problems. This new open-
source RL framework is targeted at achieving both high performance
and high quality of the computed graph solutions. This RL framework
forms the foundation of several ongoing research directions, including 1)
benchmark works on different RL algorithms and embedding methods for
classic graph problems; 2) advanced parallel strategies for extreme-scale
graph computations, as well as 3) performance evaluation on real-world
graph solutions.

Keywords: Reinforcement learning · Graph optimization problems ·
Distributed GPU computing · Open AI software environment

1 Introduction

Solving graph optimization problems effectively is critical in many important
domains, including social networks, telecommunications, marketing, security,
transportation, power grid, bioinformatics, traffic planning, scheduling, and
emergency preparedness. However, many of the graph optimization problems
are in the class of NP-hard problems, and require exponential time algorithms
to search for optimal solutions. Due to the exact graph algorithms’ exponen-
tial time complexity, practical approaches most often use either approximation

This research was funded by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (Interoperable Design of Extreme-scale
Application Software).

This is a U.S. government work and not under copyright protection
in the U.S.; foreign copyright protection may apply 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12141, pp. 439–452, 2020.
https://doi.org/10.1007/978-3-030-50426-7_33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/334949709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50426-7_33&domain=pdf
http://orcid.org/0000-0003-2791-0031
http://orcid.org/0000-0001-6806-5108
http://orcid.org/0000-0001-7382-093X
https://doi.org/10.1007/978-3-030-50426-7_33

440 W. Zheng et al.

algorithms or heuristic algorithms to tackle big graphs. The approximation algo-
rithms are of polynomial time (if they do exist), but in theory can be several
times worse than the optimal solutions. The heuristic algorithms are fast, but
do not have the same guaranteed solution quality as that of approximation algo-
rithms. Also, heuristic algorithms typically require experts’ knowledge, insights,
and repeated redesigns to create efficient heuristics.

Instead of devising different heuristics for different graph problems and dis-
tinct graph datasets, we aim to utilize machine learning techniques to “learn”
effective heuristics automatically. Since 2016, a few researchers have started to
design reinforcement learning and deep learning methods to solve combinatorial
optimization problems [4,11–14,16,22]. The rational behind it is that graphs
from the same application domain or similar types are not totally different from
each other; they may have similar structures and are often solved repeatedly.
Hence, it can be beneficial to use machine learning to generalize the methods or
heuristics to find near optimal solutions.

To investigate different deep reinforcement learning methods, and design new
domain-specific graph embeddings to capture graph features, we design and imple-
ment an open source AI environment to allow users to rapidly plug in and test new
RL algorithms and graph embeddings for graph optimization problems. The new
open source RL framework, named OpenGraphGym, is targeted at achieving both
high performance and high quality of the computed graph solutions. Our work
has the following contributions. 1) We design and create an extensible framework
for generic graph problems. A suit of NP-hard graph problems and graph embed-
ding methods can be added into our framework conveniently. Our framework can
also be used to benchmark several RL algorithms for graph optimization prob-
lems. 2) Our distributed RL framework can utilize multiple GPUs. 3) Case study
shows that our framework can help to provide better solutions for Minimum Ver-
tex Cover problems (a classic NP-hard graph problems).

In the remainder of the paper, we will first introduce the related work, then
describe how to convert (or map) conventional graph problems to RL problems
in Sect. 3. In Sect. 4, we will present the OpenGraphGym framework design and
implementation details. A case study of using OpenGraphGym to solve the Min-
imum Vertex Cover problem with different types of graphs will be shown in
Sect. 5. Finally, Sect. 6 will present our conclusions and future work.

2 Related Work

Reinforcement learning (RL) was commonly used in the field of playing games
[17,20,21]. Recently, researchers started to investigate if RL can be used to
help solve NP-hard graph problems. Based on the observation that knowledge
learned from some problem instances can be applied to a similar type of prob-
lem instances, Dai et al. [11] created an end-to-end RL model that combines
graph embedding and the objective Q function to tackle NP-hard graph prob-
lems. In their work, the solution is built by incrementally adding vertices. They
studied the Minimum Vertex Cover, the Maximum Cut, and the Traveling Sales-
man problems by applying the Q-learning algorithm. Meanwhile, their results

OpenGraphGym: A Parallel Graph RL Framework 441

also proved that the strategy learned by the smaller size of graphs could be
applied to the larger size of graphs. Bello et al. [4] also applied RL to graph
optimization problems. However, they focused on euclidean Travelling Salesman
Problems (TSP), and their methods cannot be applied to other graph problems
conveniently.

Besides RL methods, researchers have also employed supervised machine
learning methods to solve graph problems. Li et al. [12,14] applied the Graph
Convolution Network (GCN) to find multiple solutions in one step, then used a
tree search model to select the best solution. The labeled SATLIB dataset [10]
was used to train their GCN model. Another similar work was done by Mittal et
al., who also used GCN to generate multiple solutions [16]. However, instead of
using tree search, they took advantage of RL to select the best solution. In addi-
tion, Vinyals et al. applied a neural network architecture called pointer network
to address graph combinatorial optimization problems [22]. The following study
by Kool et al. modified the pointer network by introducing an attention-based
encoder-decoder model and applied it to the TSP problem [13].

Compared to the existing work, our project targets creating an open AI
framework that is optimized for solving big graph optimization problems. The
major differences are as follows. First, our OpenGraphGym framework is an open
environment, in which additional graph embedding methods, different RL algo-
rithms, and new graph problems can be plugged in and tested rapidly. Second,
OpenGraphGym is designed to be a high performance computing solution that
can support distributed GPU systems. By contrast, the existing work is either
constrained to a very small subset of graph problems, or works on shared-memory
systems only. Third, the end-to-end learning approach realized in OpenGraph-
Gym follows the line of research done by Dai et al. [11], but we extend it with new
parallel GPU computing algorithms and a distinct software design and imple-
mentation using Tensorflow [1] and Horovod [19].

3 Methodology

In this section, we describe how to apply RL to solve graph optimization prob-
lems, which involves processing input graphs, reducing graph problems to RL
problems, and executing RL training and testing.

3.1 Graph Processing for Reinforcement Learning

In conventional RL applications such as Atari games [17], input data are typically
represented as matrices. For instance, pixel images may be taken as input to train
deep neural network (DNN) models.

To handle graphs, an intuitive way is to feed a graph’s corresponding adja-
cency matrix to DNN models. It is feasible. However, there are two major issues:
1) It requires a lot of memory space to train a DNN model due to graphs’ large
dimensions; 2) The successfully trained model only works for the graphs that
have the same number of vertices as that of the training graph. To solve the

442 W. Zheng et al.

issues, we use the technique of graph embedding, which is currently an active
research area [5]. In brief, graph embedding can take a graph or vertex as input,
then produce a p dimension vector that represents the useful information of the
graph or vertex. Here, the dimension of p is predefined by users.

In our current implementation, we support two graph embedding of struc-
ture2vec [6] and node2vec [8]. Other graph embedding methods can be added to
OpenGraphGym by extending certain classes. In Sect. 4.3, we explain how to add
a new graph embedding method to OpenGraphGym.

3.2 Reinforcement Learning Formulation

In reinforcement learning, an agent and an environment interact with each other
repeatedly in every step. For each step, the agent will take an action, then the
environment will provide the agent with a reward and the old and new states.
Eventually, the RL process will stop at a special “finished” state, which is called
the terminal state. The above sequence of steps until terminal state is called
an episode.

Fig. 1. The OpenGraphGym framework architecture.

Figure 1 shows the architecture of our OpenGraphGym framework. In the
framework, the Graph Learning Agent takes an action by selecting and adding
the “best” node to the graph problem’s partial solution. Then, the Graph
Environment returns the reward. The reward is used to justify the quality
of a solution. It varies for different graph problems. More details of the frame-
work will be introduced in Sect. 4.1.

For different types of graph problems, there are different formulations for
the graph problem’s RL algorithm. For instance, an RL algorithm for a distinct

OpenGraphGym: A Parallel Graph RL Framework 443

Table 1. Examples of NP-hard graph problems that are defined in RL algorithms

Problem State Action Reward Termination

MVC Subset of nodes
selected as the
partial solution

Add a new node
to the partial
solution

Number of nodes
used to cover all
edges at the end
of the episode

All edges are
covered

MAX Subset of nodes
selected as the
partial solution

Add a new node
to the partial
solution

Cut set weight at
the end of the
episode

Cut set weight
cannot be
improved

graph problem may have a new representation of state, a problem-specific action,
and a redefined reward.

As an example, Table 1 shows two graph problems’ states, actions, termi-
nation states, and rewards. The graph problems of the Minimum Vertex Cover
(MVC) and the Maximum Cut (MAX) are defined briefly as follows:

– Minimum Vertex Cover (MVC): Given an undirected graph, find the
smallest subset of nodes to cover all the edges.

– Maximum Cut (MAX): Given an undirected graph, a subset of nodes S,
assume the cut set is the set of edges that only has one end in S, find S with
the largest weight of the cut set.

In Table 1, we can observe that the state and the action for MVC and MAX
are same. However, the reward and the termination varies. As to MVC, the
reward and the termination are related to the number of edges. As to MAX,
the reward and termination are related to the cut set weight. Note that although
we pick two NP-hard graph problems, our framework can be extended to solve
more graph optimization problems.

3.3 Graph-RL Training and Testing Algorithms

In the previous Sect. 3.2, we have introduced how to formulate a graph RL
algorithm. The next step is to train and test the model. In this section, we will
summarize the algorithm of training and testing.

As shown in Algorithm 1, we will first initialize the experience replay memory
buffer and the objective Q function (lines 2–4). Then, for each episode, we will
select a random graph from the distribution D (line 6). One distribution of
graphs include graphs generated using the same model and parameters. Next, we
will initialize three sets of vertices (lines 8 and 9). Two of them (Snew and Sold)
are for the solution. Snew is a set of vertices that includes all the nodes which
have been selected as the solution in the current step. Sold is a set of vertices that
includes all the nodes which have been selected as the solution in the previous
step. Another one (C) is for the candidate nodes. A temporary replay buffer is
also initialized (line 10). At each step, the agent will either randomly or according
to a policy to select a node vt from the candidate nodes set C (line 12). Then,

444 W. Zheng et al.

Algorithm 1. Q-learning greedy algorithm training
1: /∗ Q-learning algorithm training for the Minimum Vertex Cover problem ∗/
2: Initialize experience replay memory buffer R
3: Initialize the function Q as the objective function
4: L: number of episodes used for training
5: for episode e = 1 to L do
6: Sample a random graph in distribution D, G
7: Vertices of G, V ; Edges of G, E; T = |V |
8: Initialize two sets of vertices Sold and Snew to empty
9: Initialize a set of vertices C = V as candidate vertices

10: Initialize a temp experience replay memory buffer R temp
11: for step s = 1 to T do

12: vt =

{
Random node v ∈ C w.p. ε
argmaxv∈CQ(embed(v, Sold))

13: Add vt to Sold as Snew; Remove vt from C
14: Mark all edges linked to vt as covered
15: Add tuple(Snew ; vt ; Sold) to R temp
16: Sample a batch of tuples B samples from the R
17: Update Q using B samples; Sold = Snew

18: if All edges in E are covered then
19: Assign rewards for all tuples in R temp
20: Add tuples in R temp to R
21: break
22: end if
23: end for
24: end for

we will update the solution sets Sold and Snew (lines 13–16). Meanwhile, vt will
also be removed from the candidate nodes set C. Sold, Snew and the selected
node vt will be combined and be added to the temporary replay buffer R temp.
Tuples in the temporary buffer will be pushed to the replay buffer R when we
finish one episode (lines 19–20). At each step, we will also update the objective
function Q by sampling a batch of tuples from the replay buffer R.

After we have trained an RL agent successfully, we can utilize the trained
agent to find solutions to a set of new unseen graphs afterwards. Such an algo-
rithm is called an RL Testing algorithm. The RL Testing algorithm is nearly the
same as the training algorithm Algorithm1 except for two differences: 1) Only
the best candidate node will be selected every step (in line 12), and 2) the RL
agent will not update the objective function (in line 17).

4 Design and Implementation of OpenGraphGym

This section presents 1) the main components of our framework, 2) how we design
the framework to support parallel computing on multiple GPUs, and 3) how to
extend the framework to support new graph optimization problems and graph
embedding methods. Our code can be found at https://github.com/zwj3652011/
OpenGraphGym.git.

https://github.com/zwj3652011/OpenGraphGym.git
https://github.com/zwj3652011/OpenGraphGym.git

OpenGraphGym: A Parallel Graph RL Framework 445

4.1 Main Software Components

As shown in Fig. 1, OpenGraphGym has five main components, which are
described as follows:

– Graph Learning Agent: It is the agent that is responsible for reinforcement
learning for graph problems. It constantly receives input from three other
components: the Neural Network Model, the Agent Helper Functions, and
the Graph Environment. The Neural Network Model provides DNN model
output (e.g., Q values), the Agent Helper Functions provides actions, and
the Graph Environment provides states and rewards. On the other hand,
the Graph Learning Agent also sends information to the three components
constantly.

– Neural Network Model: It defines the graph embedding function and the
RL agent’s DNN model. During RL training, the Neural Network Model takes
a graph state as input and produces a Q value. The Q value will be sent to the
Agent for making decisions. In the current implementation of OpenGraphGym,
we use the deep network Q-learning (DQN) method. Our next work will add
the support of other RL methods such as A2C and A3C.

– Agent Helper Functions: It is a set of functions that are used by the
RL agent to compute its appropriate action. By receiving the parameters
of states, models outputs and graph problem types, the helper functions
computes the action needs to be taken by checking the model output and the
graph problem type. Please note that the Agent Helper Functions varies
for different graph problems. In our framework, we include the Agent Helper
Functions for some graph problems.

– Graph Environment: The Graph Environment is the interface between
the Graph and the Graph Learning Agent. Action, reward and state will
be transferred through it. For example, when the action is received from the
Graph Learning Agent, the Graph Environment will call the function step
to send the action to the component Graph. Then, it will receive the state
and the reward from the component Graph. Finally, it will push the state
and the reward to the Graph Learning Agent.

– Graph: It is a graph object implemented by our framework. Each graph
object stores a set of graph-related information (e.g., number of nodes, num-
ber of vertices). Currently, our framework supports two types of graph objects.
In the Basic Graph, we store the node lists, edge lists, number of nodes, and
other basic information of a graph. Another one is defined by the networkX
graph library [9]. NetworkX will read graph objects from edgelist files. The
Basic Graph object is more flexible and can be extended by the user. If users
cannot find a metric of graphs in networkX or other graph libraries, they can
define and add their metrics to the Basic Graph object.

In general, the above components can be classified into two categories. The
first category is designed to support for the agent part in RL, which includes
the first three components. The Graph Learning Agent works as the interface

446 W. Zheng et al.

between them. The second category is designed to support the environment part,
for which the Graph Environment is the interface of them.

Furthermore, our framework is designed to be modular. By modifying a cou-
ple of components, it can be extended to support new graph embedding methods,
RL algorithms, and graph optimization problems. For example, if a user desires
to study another graph problem, the user needs to modify the Graph component
to do it. In Sect. 4.3, we will show more details about it.

4.2 Parallel Implementation Using Multiple GPUs

The OpenGraphGym framework is able to support RL training on multiple
GPUs. The following content describes how we distribute the workload and
compute the graph RL in parallel among multiple GPUs.

– Parallel Setup and Initialization: Our framework will launch n processes
given a number of n available GPUs. One CPU and one GPU will be mapped
to one process. Inside each process, we create an instance of Graph Learning
Agent and an instance of Graph Environment. Each Graph Learning Agent
has its own copy of the global DNN model (i.e., a single model but duplicated
multiple times on multiple GPUs), as well as a private RL replay buffer. At
the beginning of the parallel execution, we use the distributed deep learning
framework Horovod [19] to ensure each agent’s DNN model will be initialized
with the same weights.

– Exploring Graphs in Parallel: We use an asynchronous algorithm to let
each process explore training on different graphs in parallel. At the start of
each episode, every process will select a random graph from all the training
graphs based on their unique random seeds. At the end of the episode, each
process will then push its experience tuples to its own replay buffer. Note
that all the training graphs are generated automatically by our framework.

– Computing Gradients: In the previous step, each process has started to
explore graphs asynchronously. Then, at the end of every step, as shown in
Algorithm 1, line 16, each process needs to sample some tuples from their
replay memory buffer and compute the gradients. Assume the batch size is b
and we have n processes, each process will sample b/n tuples and compute the
averaged gradients of b/n tuples. Thus, each process will have one gradient.
Finally, all processes’ gradients will be averaged. We use the distributed deep
learning framework Horovod [19] to finish the gradient computing. Horovod
will accomplish two major tasks in this step: 1) add a barrier to wait for
all processes to finish the gradient computing, and 2) average all processes’
gradients and broadcasts it to them.

– Updating Model: In the previous step, all processes have received the aver-
aged gradients. Then, each process needs to update their DNN model using
the new gradient, as shown in Algorithm 1, line 17. Please note that all pro-
cesses’ DNN models are still the same after updating for the following two
reasons: 1) DNN models are initialized to be the same, and 2) the gradients
used to update the DNN models are identical for all processes.

OpenGraphGym: A Parallel Graph RL Framework 447

Please note that the above operations are not executed in the same frequency.
As shown in the Algorithm 1, the agent’s DNN model will be updated in each
step. Hence, the operations of Computing Gradients and Updating Model
will be called every step. Moreover, in each episode, a new graph will be explored.
Therefore, the operation of Exploring Graphs will be called every episode.

4.3 Framework Extensibility

In this section, we demonstrate the extensibility of our framework from two
perspectives: 1) how to support other graph optimization problems, and 2) how
to add new graph embedding methods.

Now, we use an example to show to extend OpenGraphGym to support
other graph optimization problems. In the case of adding the Max Cut problem
(MAX), we need to modify the Graph component as shown in Fig. 1. More specif-
ically, two functions will be modified, which are: 1) the environment constructor
(function init in graph.py), and 2) the step function (function update state in
graph.py). In the environment constructor, we need to add a new local variable
to represent the cut set weight inside the environment initialization function. In
the step function, we then calculate the MAX-specific cut set weight to decide the
termination state and the corresponding reward. Table 1 shows the definitions
of the reward and termination state for the MAX graph problem.

To demonstrate how to add the new graph embedding method, we will use
an example of adding the node2vec embedding method. Node2vec is a graph
embedding method aiming at preserving each node’s neighborhood information
[8]. We use the open-source node2vec library Node2Vec in our framework [18].
Two functions needs to be modified in the Graph component are 1) the envi-
ronment constructor (function init in graph.py), and 2) the step function
(function update state in graph.py). As to the environment constructor, we need
to set up the node2vec model using the APIs provided by the Node2Vec library.
As to the step function, we need to reset and update the node2vec model when
the graph is modified.

5 A Case Study on Minimum Vertex Cover (MVC)

To evaluate the performance and accuracy of the OpenGraphGym framework,
we compare the solution found by our RL framework with that of other classi-
cal solvers on the MVC problem. In addition, we did experiments to show the
improved convergence rate by utilizing multiple GPUs.

5.1 Experimental Setting

The software and hardware configurations for all our experiments are provided
as follows.

Software: To implement OpenGraphGym, we use Horovod version 0.16.4
to compute DNN gradients in a distributed setting, as mentioned in Sect. 4.2.

448 W. Zheng et al.

Horovod can help with our distributed training by doing the following three
tasks: 1) initialize each agent’s DNN models to be the same, 2) add a barrier
for multiple processes gradient computing, and 3) average the gradients from all
processes and broadcast it to them. We also use Tensorflow version 1.12.0 [1],
graph library networkX version 2.4 [9], and the HPC environment toolkit Docker
version 18.09.2 [15]. Tensorflow is responsible for the agent’s neural network
training and inference. As for networkX, we use it to generate, manipulate, and
evaluate different graphs. As to Docker, we create an environment using Docker
and install all required libraries of our framework. Then, we can deploy the
environment conveniently to a new HPC system. Docker helps us to manage the
software and libraries used in our framework.

Graph Datasets Used: Our graph datasets contain two types of graphs,
which are generated by two different distributions or random graph generation
models. In the following content, we will present how graphs are generated using
them. We will also present the parameter values we set for each model.

– Erdős-Rényi (ER) Graphs: The Erdős-Rényi model will generate a random
graph with the graph size m and the edge possibility r [7]. We use the func-
tion erdos renyi graph in networkX to generate different sizes of ER graphs.
The edge probability is set to 0.15, which means every possible edge has the
possibility of 0.15 to exist.

– Barabási-Albert (BA) Graphs: The Barabási-Albert model generate the ran-
dom graph based on the graph size m and the edge density d [2]. Edge density
d is equal to the number of edges from a new node to the existing nodes. We
use the function barabasi albert graph in networkX with the edge density of
4 to generate BA graphs.

Computer System: We use an Nvidia DGX workstation to do all experi-
ments, which consists of 40 CPU cores and 4 Volta V100 GPUs. More details of
the system is provided in Table 2.

Others: In addition, we use the learning rate 1.0 × 10−5 and batch size 128
to train our DNN model. The RL parameter exploration rate ε is set to 0.1. The
size of the RL replay buffer is set to store up to 50,000 experience tuples.

5.2 Quality of Graph Problem Solutions

To evaluate the quality of our graph solutions, we compare the results generated
by five different MVC solvers:

– Graph-RL: This is our RL framework of OpenGraphGym.
– Random: The Random solver finds a solution by randomly taking a node

from the graph in each step.
– 2-OPT: The 2-OPT approximation algorithm takes both endpoints of an

edge from the graph in each step. Its solution is guaranteed to be less than
twice of the optimal solution [3].

OpenGraphGym: A Parallel Graph RL Framework 449

Table 2. An Nvidia DGX System.

CPU Intel Xeon CPU E5-2698 v4 2.20 GHz

GPU Nvidia Volta V100

Number of CPU Cores 40

Number of GPUs 4

Memory per GPU 16 GB

Operating System Ubuntu

OS Version 16.04.6

– Greedy: The Greedy algorithm builds the solution by simply adding the
node with the largest degree in each step.

– Exhaustive Search: For the verification purpose, we also implement a
“brute-force” random search MVC solver. We let this program continuously
search for large numbers of solutions until no better solution could be found
in one hour.

In our validation experiment, we use 40 graphs to train the RL agent, and
use 10 graphs to test the agent. The 10 test graphs has never been seen by the
agent during training. Note that the training graphs and test graphs belong to
the same type of graphs: either ER or BA type.

Table 3 shows four different datasets used in our experiments (one dataset
per row), each with different average number of nodes and edges in the ER or
BA type. In the table, the graph type, average number of vertices and edges are
shown in the first three columns. The best two solutions are also highlighted in
a bold font.

As to the ER graph dataset with 20 nodes, the exhaustive search algorithm
obtains the best solution with 9.4. Our Graph-RL algorithm is the second-best
with 10.1. As to the BA graph dataset with 20 nodes, our solver is the best one
with MVC size 11.4. The second-best is the exhaustive search algorithm with
the best MVC size 12. For the rest of the solvers, the 2-OPT and the Greedy
are similar, whose solutions are around 15 and 16. Finally, the random method
produces the worst solutions for both ER and BA graphs.

We also use ER and BA graph datasets that have 50 nodes for training and
testing. As shown in the two rows at the bottom of Table 3, our Graph-RL solver
always found the best MVC solutions.

Based on the above comparison, we can say that our Graph-RL solver and
the exhaustive search solver are constantly better than the other three solvers.
In addition, the quality of the Graph-RL solutions is comparable to that of the
long-time exhaustive searching algorithm.

450 W. Zheng et al.

Table 3. Experiments with MVC on both ER and BA graphs. All MVC solutions
shown here are averaged over 10 testing graphs. Five solvers (Graph-RL, Random, 2-
OPT, Greedy, Exhaustive Search) are compared. The best two solutions are highlighted
in bold for each dataset. Graph-RL is the solution obtained by our OpenGraphGym
framework.

Graphs Avg#nodes Avg#edges Graph-RL Random 2-OPT Greedy Exhaustive
search

ER 20 30.1 10.1 17.8 15.2 16.3 9.4

BA 20 64 11.4 18 16.2 16 12

ER 50 190.4 33.2 48 45 47.4 36.4

BA 50 184 28.8 48 41.8 46 34.3

5.3 Deploying an Agent Trained by Small Graphs to Test Bigger
Graphs

The DNN model implemented by our framework can support graphs with various
sizes. This feature enables us to train and test graphs with distinct sizes. To test
the generalization performance of our model, we train the model on smaller size
of graphs first. Then, we test the learned model using larger size of graphs.

The new experimental results are shown in Fig. 2. For this experiment, we
use a dataset with 40 ER graphs that have an average number of 20 nodes
for training. However, we use a dataset of 10 ER graphs that have a number
of 50 nodes for testing. For every 20 episodes of training, we use the 50-node
testing dataset to test the model’s solution quality. From Fig. 2, we can observe
that after around 75 episodes, the average number of nodes to cover the test
graph dataset reaches 34.8, which is close to the exhaustive search algorithm’s
solution. This result demonstrates that an RL agent trained from small graphs
can be generalized to solve larger size graphs.

5.4 Effect of Using Multiple GPUs

Finally, we use multiple GPUs to accelerate the RL training process with our
OpenGraphGym framework. In the experiment, the training dataset has 40 ER
graphs and the test dataset has 10 ER graphs. All the training and testing graphs
have an average number of 20 nodes. Also, we evaluate the trained RL model’s
solution with the test graph dataset in every episode.

As shown in Fig. 3, the blue line represents the MVC solutions computed by
a single GPU. The orange line represents the solutions computed by four GPUs.
From the figure, we can observe that when we use one GPU, our framework can
find the best solutions after 80 episodes. By contrast, the framework takes only
62 episodes to find the best solutions when using four GPUs. This experiment
shows that our RL framework is able to find the best solution of a problem by
taking fewer episodes (i.e., converging faster) when more GPUs are used.

OpenGraphGym: A Parallel Graph RL Framework 451

Fig. 2. Generalization ability test. 40
graphs with 20 nodes are used to train
the model. At every 20 episodes, the
model will be tested using 10 graphs
with 50 nodes.

Fig. 3. In this set of experiments, we
use multiple GPUs for training on ER
graphs with 20 nodes. The orange line
is for the testing results with four
GPUs. The blue line is for the results
with one GPU. (Color figure online)

6 Conclusion

In this work, we design and implement a parallel reinforcement learning frame-
work OpenGraphGym for graph optimization problems. Then, we use the MVC
as the test case to demonstrate that the solution provided by our framework
is better than some classical MVC solvers. This work focuses on three research
directions: 1) We aim to use the open framework to benchmark various new RL
algorithms and embedding methods. 2) Many real-world graphs are extreme-
scales. We will add the support of extreme-scale graphs to our framework. 3) Cur-
rently, we only support a few basic parallel strategies. To better utilize the high
performance computing resources, we will extend the OpenGraphGym framework
to design more advanced and efficient parallel strategies.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283 (2016)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

3. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Technical report, Computer Science Department, Technion
(1983)

4. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

5. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

http://arxiv.org/abs/1611.09940

452 W. Zheng et al.

6. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for
structured data. In: International Conference on Machine Learning, pp. 2702–2711
(2016)

7. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5(1), 17–60 (1960)

8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

9. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM (United States) (2008)

10. Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on SAT. In: SAT
2000, pp. 283–292 (2000)

11. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Advances in Neural Information Processing
Systems, pp. 6348–6358 (2017)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. Kool, W., van Hoof, H., Welling, M.: Attention solves your TSP, approximately.
Statistics 1050, 22 (2018)

14. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. In: Advances in Neural Information Processing
Systems, pp. 539–548 (2018)

15. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

16. Mittal, A., Dhawan, A., Medya, S., Ranu, S., Singh, A.: Learning heuristics over
large graphs via deep reinforcement learning. arXiv preprint arXiv:1903.03332
(2019)

17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

18. Node2Vec (2019). https://github.com/eliorc/node2vec
19. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv preprint arXiv:1802.05799 (2018)
20. Silver, D., et al.: Mastering the game of go with deep neural networks and tree

search. Nature 529(7587), 484 (2016)
21. Silver, D., et al.: Mastering the game of go without human knowledge. Nature

550(7676), 354 (2017)
22. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural

Information Processing Systems, pp. 2692–2700 (2015)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1903.03332
https://github.com/eliorc/node2vec
http://arxiv.org/abs/1802.05799

	OpenGraphGym: A Parallel Reinforcement Learning Framework for Graph Optimization Problems
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Graph Processing for Reinforcement Learning
	3.2 Reinforcement Learning Formulation
	3.3 Graph-RL Training and Testing Algorithms

	4 Design and Implementation of OpenGraphGym
	4.1 Main Software Components
	4.2 Parallel Implementation Using Multiple GPUs
	4.3 Framework Extensibility

	5 A Case Study on Minimum Vertex Cover (MVC)
	5.1 Experimental Setting
	5.2 Quality of Graph Problem Solutions
	5.3 Deploying an Agent Trained by Small Graphs to Test Bigger Graphs
	5.4 Effect of Using Multiple GPUs

	6 Conclusion
	References

