194 research outputs found

    Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development

    Get PDF
    Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.postprin

    Ab initio equations of state for hydrogen (H-REOS.3) and helium (He-REOS.3) and their implications for the interior of Brown Dwarfs

    Full text link
    We present new equations of state (EOS) for hydrogen and helium covering a wide range of temperatures from 60 K to 107^7 K and densities from 101010^{-10} g/cm3^3 to 10310^3 g/cm3^3. They include an extended set of ab initio EOS data for the strongly correlated quantum regime with an accurate connection to data derived from other approaches for the neighboring regions. We compare linear-mixing isotherms based on our EOS tables with available real-mixture data. A first important astrophysical application of this new EOS data is the calculation of interior models for Jupiter and the comparison with recent results. Secondly, mass-radius relations are calculated for Brown Dwarfs which we compare with predictions derived from the widely used EOS of Saumon, Chabrier and van Horn. Furthermore, we calculate interior models for typical Brown Dwarfs with different masses, namely Corot-3b, Gliese-229b and Corot-15b, and the Giant Planet KOI-889b. The predictions for the central pressures and densities differ by up to 10%\% dependent on the EOS used. Our EOS tables are made available in the supplemental material of this paper.Comment: 14 pages, 19 Figures, accepted at ApJ

    The Effect of the Drug Life Cycle Price on Cost-Effectiveness:Case Studies Using Real-World Pricing Data

    Get PDF
    Objectives: Cost-effectiveness analyses (CEAs) generally assume constant drug prices throughout the model time horizon, yet it is known that prices are not constant, often with price decreases near loss of exclusivity (LOE). This study explores the impact of using dynamic drug-specific prices on the incremental cost-effectiveness ratio (ICER) using selected reproduced case studies. Methods: Case studies were selected following explicit criteria to reflect a variety of drug characteristics. For each drug, a published CEA model was identified, replicated, and modified with dynamic real-world pricing data, to compare ICERs based on constant drug prices with estimates obtained when including drug life cycle pricing. The impact of dynamic real-world pricing—inclusive LOE—was analyzed using a single patient cohort and multiple cohorts over time. Results: Fluvastatin, alendronic acid + colecalciferol combination therapy, letrozole and clopidogrel were selected as case studies. Inclusion of real-world pricing data compared with applying constant prices reduced the ICER in a single-cohort setting up to 43%. In the multicohort analyses, further reductions of the ICERs were observed of up to 113%. The ICERs were sensitive to the period of drug usage relative to the models’ time horizons, the relative proportions of drug costs in the overall treatment costs, and timing of LOE compared with the cost year of the original analysis. Conclusions: Assuming dynamic drug prices may lead to more representative ICER estimates. Future CEAs for drugs could account for predicted and disaggregated life cycle price developments based on retrospective data

    Investing in the Prevention of Communicable Disease Outbreaks:Fiscal Health Modelling—The Tool of Choice for Assessing Public Finance Sustainability

    Get PDF
    National strategies for preparedness for future outbreaks of COVID-19 often include timely preparedness with vaccines. Fiscal health modelling (FHM) has recently been brought forward as an additional analysis by defining the public economic impact from a governmental perspective. As governments are the main decision-makers concerning pandemic preparedness, this study aimed to develop an FHM framework for infectious diseases in the Netherlands. Based on the Dutch COVID-19 outbreak of 2020 and 2021 and publicly available data on tax income and gross domestic product (GDP), the fiscal impact of COVID-19 was assessed using two approaches. Approach I: Prospective modelling of future fiscal impact based on publicly available laboratory-confirmed COVID-19 cases; and Approach II: Retrospective assessment of the extrapolated tax and benefit income and GDP. Approach I estimated the consequences that can be causally linked to the population counts reducing income taxes by EUR 266 million. The total fiscal loss amounted to EUR 164 million over 2 years (excluding pension payments averted). The total losses in terms of tax income (2020 and 2021) and GDP (2020) (Approach II), were estimated at, respectively, EUR 13.58 billion and EUR 96.3 billion. This study analysed different aspects of a communicable disease outbreak and its influence on government public accounts. The choice of the two presented approaches depends on the perspective of the analysis, the time horizon of the analysis and the availability of data.</p

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

    Get PDF
    Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes

    Overexpression of the Rieske FeS protein of the Cytochrome b 6 f complex increases C4 photosynthesis in Setaria viridis.

    Get PDF
    C4 photosynthesis is characterised by a CO2 concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO2 partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C4 photosynthesis. Cytochrome b 6 f is a key control point of electron transport in C3 plants. To study whether C4 photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in Setaria viridis. This resulted in a higher Cytochrome b 6 f content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO2 assimilation rate at ambient and saturating CO2 and high light. Our results demonstrate that removing electron transport limitations can increase C4 photosynthesis
    corecore