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Abstract 1 

Sugar supply is important for the vegetative growth and reproductive development of 2 

plants. Changes in carbon flow and sink/source activities could affect floral, architectural, and 3 

reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 4 

of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and 5 

tuber starch content, and higher photosynthesis rate. There was a significant change of 6 

sucrose in leaves, petioles and sink of the overexpressors, which were consistent with the 7 

upregulated expression of sucrose transporter 1 (StSUT1) in the OE lines. Low sucrose 8 

content in the source leaves could boost the photosynthesis rate by less sugar inhibition. 9 

Meanwhile, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) 10 

were also significantly up-regulated in the AtPAP2 OE lines, which could supply more 11 

sucrose for export and anabolism. Since co-immunoprecipitation assays did not detect direct 12 

interactions between AtPAP2 and SPS and StSUT1, the expressions of SPS and StSUT1 were 13 

upregulated in AtPAP2 overexpression lines through an indirect mechanism.  14 

 15 

 16 
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1. Introduction  20 

Photosynthate supply and sink strength have been demonstrated experimentally to be the 21 

major determinants of crop yield [1]. Assimilated carbon from photosynthesis supplies both 22 

energy sources for metabolism and building blocks for complex carbohydrates. 23 

Photoassimilate is further partitioned within the mesophyll cells and transported, mainly in 24 

the form of sucrose, from source to sink tissues to support plant growth and development. 25 

The plant growth rate depends on the photosynthetic fixation capacity and on how efficiently 26 

the fixed carbon is utilized in biosynthetic processes which support growth. Accordingly, the 27 

distribution of carbon assimilates assists in balancing photosynthetic activity in the source 28 

leaves and photoassimilate utilization and storage in sinks. During this process SPS activity, 29 

which usually determines sucrose synthesis rates, and sucrose transporters (SUTs) required 30 

for sucrose phloem loading, have been demonstrated to be regulated by protein 31 

phosphorylation status [2].  32 

Purple acid phosphatases (PAPs) are a family of acidic binuclear metalloenzymes which 33 

http://en.wikipedia.org/wiki/Phosphatase
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hydrolyze phosphate esters and anhydrides under acidic conditions. Many plant PAPs were 1 

shown to be induced by Pi starvation and involved in phosphorus metabolism[3]. Our 2 

previous studies demonstrated that overexpression (OE) of AtPAP2, an Arabidopsis PAP with 3 

an additional C-terminal hydrophobic motif, located at the outer membrane of both 4 

chloroplasts and mitochondria [4], drastically enhanced the growth rate and seed yield of 5 

Arabidopsis thaliana and Camelina sativa [5, 6]. These results imply that AtPAP2 can 6 

potentially regulate plant carbon metabolism.     7 

 8 

2. Materials and Methods  9 

2.1 Plant materials and growth conditions 10 

Potatoes (Solanum tuberosum var. Bintje) were provided by Prof. M. L. Chye of the 11 

University of Hong Kong and potatoes (Solanum tuberosum ‘Desirée’) were from the Max 12 

Planck Institute of Molecular Plant Physiology, Potsdam-Golm. Potato was maintained in 13 

tissue culture with 16-/8-h day/night cycles on Murashige and Skoog medium [7] in growth 14 

room, which contained 2% (w/v) sucrose. The top 5 internode of one-month-old WT potatoes 15 

were used for transformation. In addition, transgenic potato plants were first grown in a 16 

growth chamber (150 μmol/m2 s1 and 75% relative humidity (RH)) under 16 h light (22°C) / 17 

8 h dark (18°C) light period for several weeks before they were transferred to greenhouse 18 

(Light intensity varied between a minimum of 90 and a maximum of 200 µmol/ m2 s1 PPFD 19 

and 75% RH) with the day/ night condition of Hong Kong and Germany and watered twice 20 

every week before tuber collection. Tubers of all plants were collected after growing in soil 21 

for about 4 months.  22 

 23 

2.2 Extraction of total plant RNA and quantitative RT-PCR analysis  24 

 Total RNA was isolated from fresh leaves by using Trizol reagent (Invitrogen). To generate 25 

full-length cDNA for quantitative RT-PCR, reverse transcription was performed using the M-26 

MLV reverse transcriptase (Promega, Hong Kong). Full length AtPAP2 cDNA was amplified 27 

by Pfx DNA polymerase (Invitrogen) and subcloned into pBA002 by XhoI and SacI (Table 28 

S1) for potato transformation. 29 

Quantitative RT-PCR reaction was carried out in the presence of SYBR Green with 30 

HotGoldStar DNA polymerase (Eurogentec) in Rotor Gene 3000 cycler (LTF Labortechnik) 31 

using Rotor Gene software (version 4.6.94). An aliquot of 0.2 µL cDNA of the 10 µL RT 32 

reaction was used for each reaction. Relative quantification of transcript amounts was 33 

http://en.wikipedia.org/wiki/Hydrolyse
http://en.wikipedia.org/wiki/Esters
http://en.wikipedia.org/wiki/Anhydrides
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calculated in relation to the respective ubiquitin transcript level and given as percentage of 1 

ubiquitin. Primers (Table S1) were designed according to published papers [8] and produce 2 

50- to 150-bp amplicon using Primer5 software. Quantitative RT-PCR data were corrected by 3 

calculation of the PCR efficiency individually using the LinReg PCR software[9].  4 

 5 

2.3 Agrobacterium-mediated transformation and Southern Blotting analysis 6 

The full-length coding region of the AtPAP2 cDNA (AT1G13900) was subcloned into the 7 

binary vector pBA002 downstream of the cauliflower mosaic virus (CaMV) 35S promoter 8 

(pBA002-CaMV35: AtPAP2). The vector was then introduced into Agrobacterium 9 

tumefaciens strain GV3101 and internodal explants from 4-week-old WT plantlets were used 10 

for transformation [10]. Southern blot analysis was carried out as described [11]. The probes 11 

were SB-PAP2-f and SB-PAP2-r (Table S1). 12 

 13 

2.4 Western blotting analysis  14 

Potato leaves were finely ground in a 1.5-ml Eppendorf tube containing 200 μl of ice-cooled 15 

extraction buffer (50 mM Tris-HCl, pH7.4 containing 150 mM NaCl, 1mM EDTA, 0.2 mM 16 

PMSF) and incubated on ice for 30 min with occasional mixing. The protein extract was 17 

separated by centrifugation at 10,000 x g for 30 min at 4°C. The supernatant was transferred 18 

to a new 1.5-ml Eppendorf tube and the protein concentration was determined by the 19 

Bradford assay method using the Bio-Rad Protein Assay Kit. Proteins (25 μg) were resolved 20 

by SDS-PAGE, transferred to Hybond-C nitrocellulose membranes, immunodetected and 21 

then the proteins were visualized by the Enhanced Chemiluminescence (ECL) method 22 

(Amersham Biosciences).  23 

 24 

2.5 Measurement of leaf assimilation rate   25 

The leaf assimilation rates of potato were measured using a portable photosynthesis system 26 

(LI-COR, LI-6400, Nebraska, USA) in the morning (8.30 to 12:30 AM) under a fixed blue-27 

red light-emitting diode (LED) light source. Nine measurements were made for each three 28 

fully expanded intact leaves from the tip of 65 to 67-day-old potato and at least 3 plants of 29 

each line were used for measurement. Light curves were measured on 6 cm2 leaf area using 30 

the instrument's auto program function. Measurements were taken in darkness, to determine 31 

leaf respiration, and at actinic light intensities of 0, 125,250, 500, 750 and 1000 µmol·m–2·s–1 32 

at 25°C cuvette temperature and a CO2 concentration of 400ppm. Relative humidity was set 33 
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to 75%. 1 

 2 

2.6 HPLC analysis of sugar content 3 

For measurement of sucrose, glucose and fructose of plant tissues, an aliquot of 0.1 g freeze-4 

dried tissue powder was dissolved in 1 ml of 70% (v/v) ethanol, incubated at 70°C for 90  min 5 

and centrifuged at 13,000 × g for 10 min. After passing through a 0.22 mm filter, A volume of 6 

10 μl sample was injected into a CarboPac PA 1 column (4 x 250 mm) connected to a Dionex 7 

LC 20 Chromatography system and the sugar contents were analyzed by high performance 8 

anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) [12]. 9 

Standard curves were prepared by 0.0-0.1 mg/ml sucrose, fructose and glucose in 70% 10 

ethanol. The levels of starch in the tubers were determined as described previously [13]. 11 

 12 

2.7 SPS activity assay 13 

SPS activity was assayed by the anthrone test [14]. Samples were incubated for 20 min at 14 

25°C in 50 μl pre-balanced buffer (50 mM HEPES-KOH pH 7.5, 20 mM KCl, and 4 mM 15 

MgCl2) containing (a) Vmax assay: 12 mM UDP-Glc and 10 mM Fru6P (in a 1:4 ratio with 16 

glucose-6-phosphate (Glc6P), (b) Vlimiting assay: 4 mM UDP-Glc and 2 mM Fru6P (in a 1:4 17 

ratio with Glc6P) and 5 mM KH2PO4. 18 

 19 

2.8 Pull-down assay 20 

Plant materials were ground in liquid nitrogen and incubated in ice-cold buffer (50 mM 21 

HEPES-KOH pH 7.5, 150 mM NaCl, 50 mM NaF, 5 mM NaPPi, 1 mM dithiothreitol, 1 mM 22 

PMSF, 1 mM benzamidine) for 15 min and then they were centrifuged at 12, 000 x g for 20 23 

min. One milligram extracted protein was added to 5 μg GST-14-3-3 [15] on 50µl GST beads 24 

with gentle agitation for 2 h at 4°C. The beads were then centrifuged at 2,000 x g for 2 min at 25 

4°C and washed five times with pull-down washing buffer (50 mM HEPES-KOH pH 7.5, 26 

150 mM NaCl, 1 mM dithiothreitol). The washed beads were eluted (50 mM Tris-HCl, 10 27 

mM reduced glutathione, pH 8.0, 150 mM NaCl) and the supernatant was subjected to SDS-28 

PAGE for silver-staining and Western blotting. 29 

 30 

2.9 Co-immunoprecipitation (Co-IP) assay   31 

Twenty microliter of soluble proteins in inhibitor buffer (1x PBS, pH 7.4, 1 mM PMSF, 1 32 

mM NaVO4, 50 mM NaF, with COMPLETETM Protease Inhibitor Cocktail (Roche)) was 33 
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incubated with 10 μg first antibody for 2 h at 4°C, and then mixed with 20 μl Protein-G 1 

Sepharose (10 ml of 50% slurry in 1 X PBS/20% ethanol (GenScript Co.) for 2 h . The pellets 2 

were washed three times in 1 ml inhibitor buffer and boiled in 20 μl SDS sample buffer [16] 3 

and used for SDS-PAGE and Western blotting.  4 

 5 

3. Results and Discussion 6 

Overexpression of AtPAP2 in Arabidopsis and Camelina has been shown to improve plant 7 

growth and seed yield [5, 6]. Potatoes feature a very large sink organ (tuber) for carbon and 8 

utilize a well-defined apoplastic phloem loading mechanism with sucrose transporters, and 9 

are highly suitable for further investigations of the biological functions of AtPAP2. We 10 

generated four transgenic lines in potatoes with high and mild expressions of AtPAP2 11 

proteins (Fig. S1 and S2). All three high AtPAP2 expressing potato lines (OE1, OE4 and OE7) 12 

grew faster and produced more lateral branches than the WT and the mild AtPAP2 13 

overexpression line (OE10; Fig. 1, Fig. S3). The first harvest plants were grown in 14 

greenhouse from April 2010 to August 2010 under LD conditions. The second and the third 15 

harvest plants were grown in greenhouses in Hong Kong (Fig. S4) and in Golm (Table 2, Fig. 16 

S5), respectively. All three high expression OE lines displayed earlier flowering than the WT 17 

(Table 1). Floral and tuberization transitions in potatoes are controlled by two different FT-18 

like paralogues that respond to environmental cues [17]. As OE lines exhibited earlier 19 

flowering (Table 1) and produced more tubers (Table 2), it would be interesting to examine if 20 

FT expression is driven by high sugar supply from source tissues. 21 

Genetic manipulation of sucrose transporter (SoSUT1) in potato has been documented to 22 

result in a shift in carbon partitioning in both leaves and tubers and improved assimilation 23 

rates [18]. Our OE lines generally exhibited higher photosynthetic rates (10%-20%) than the 24 

WT (Fig. 2) and higher StSUT1 expression level (Fig. 4). After 4 months of growth in the 25 

greenhouse, tubers were collected when the plants were totally senescent. In both harvests 26 

(Fig. S4 and S5), all three high AtPAP2 expression lines (OE1, 4, and 7) produced more 27 

tubers than the WT and the biomass of aboveground organs was also higher in the OE lines 28 

(Table 2). In a separate experiment using a different potato cultivar (Solanum. tuberosum cv. 29 

Desirée), highly similar results were obtained, suggesting that the observation was 30 

independent of the cultivar. Compared with the WT, overexpression of AtPAP2 increased the 31 

tuber yield per plant ~2 to 3-fold in Solanum tuberosum var. Bintje and 2-fold in Solanum 32 
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tuberosum ‘Desirée’, respectively. The increase in tuber yield was due to an increase in dry 1 

weight and starch content (Table 2). In total, the five greenhouse trials all produced highly 2 

similar results. 3 

Increased sink demand (via systemic signals) and decreased photoassimilate levels in source 4 

leaves (via an alleviated feedback repression of photosynthesis by sugar sensing) can both 5 

enhance photosynthetic activity [19]. Therefore, a high performance liquid chromatography 6 

method was next used to evaluate sugar contents of leaves immediately following the 7 

measurement of the rate of photosynthesis. The sucrose contents of all OE lines were 8 

decreased by ~60%, with glucose and fructose also being decreased (Fig. 3). These results 9 

suggested an inverse relationship between AtPAP2 expression and the contents of sucrose, 10 

glucose and fructose in potato leaves. For comparison we analyzed the sugar content of the 11 

petioles (phloem) of the top 2 to 3 fully-expanded leaves of 68-day-old potatoes. In contrast 12 

to the leaves, the sucrose levels of the petioles were increased by 1.5 to 2 fold in the petiole, 13 

while glucose and fructose contents increased moderately (Fig. 3). The higher concentration 14 

of sucrose in the petioles is consistent with its higher sucrose transport activity. 15 

Overexpression of SoSUT1 in potato resulted in a shift in carbon partitioning in both leaves 16 

and tubers and improved photosynthesis rate [18]. Improved rates of sugar efflux via the leaf 17 

petioles would stimulate petioles loading and lower mesophyll carbohydrate levels and thus 18 

relieve inhibition of photosynthetic activity. Consistent with this hypothesis the sugar levels 19 

in tubers of the three higher AtPAP2 overexpression lines tubers were greatly increased (Table 20 

2).  21 

The rate of sucrose synthesis controlled by SPS was shown to correlate with the rate of 22 

photosynthesis and with the rate of export from leaves [20].  The activity of the SPS is 23 

inhibited by binding with the 14-3-3 protein which is regulated by the SnRK1 protein kinase. 24 

In previous studies transgenic Camelina and Arabidopsis overexpressing AtPAP2 exhibited 25 

higher SPS activity in the leaves [5]. Moreover, transgenic tomato, potato, Arabidopsis and 26 

tobacco expressing various SPS genes were documented to exhibit increased biomass and 27 

photosynthesis rate. As shown in Table 3, SPS activity was enhanced in the leaves of AtPAP2 28 

OE plants in both optimal Vmax and limiting Vlimit capacities. Thus, both a higher 29 

photosynthetic rate (Fig. 2) and an increased SPS activity in OE lines can provide more 30 

sucrose for growth. Western blotting analysis using an anti-SPS antibody (Agrisera, Sweden) 31 

indicated that SPS accumulation was remarkably enhanced in the OE lines. However, the 32 

protein expression levels of nitrate reductase (NR) and fructose bisphosphatase (FBPase) 33 
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were indistinguishable from the WT (Fig. 4). Moreover, the levels of 14-3-3 protein and the 1 

amount of phosphorylated SPS that was capable of binding 14-3-3 were unaltered in the OE 2 

lines. These results indicated that only unphosphorylated SPS was greatly enhanced in the OE 3 

lines, which would be anticipated to result in a far greater in vivo SPS enzyme activity. To 4 

determine if there was direct interaction between AtPAP2 and SPS, the crude protein extracts 5 

of potato leaves were immuno-precipitated by the anti-SPS antibody. The bound proteins 6 

were then detected by an anti-AtPAP2 antibody via Western blotting. No direct interaction 7 

between AtPAP2 and SPS was observed (Fig. S6). Besides, the expression level of SnRK1 8 

was not significantly changed (Fig. 4), and no protein interaction between SnRK1 and 9 

AtPAP2 could be detected by the yeast two-hybrid assay (data not shown). Hence, the higher 10 

SPS activity in the OE lines was attributed to a higher expression level of SPS protein, rather 11 

than through activation by post-translational modification. Therefore, overexpression of 12 

AtPAP2 appears to indirectly regulate the expression and enzyme activity of SPS, thus 13 

affecting sucrose synthesis, flower time and tuberization.  14 

To examine how AtPAP2 overexpression might affect sugar partitioning in leaves and 15 

petioles, the expression levels of sugar transporters in leaves were examined. Although the 16 

expression level of StSUT1 transcript did not change significantly, its protein level was 17 

significantly elevated in the OE lines. StSUT1 is essential for long-distance transport of 18 

sucrose and plays a role in phloem loading in mature leaves [21]. Its higher expression in the 19 

leaf of OE lines may lead to a higher sucrose level in petioles and tubers but a lower leaf 20 

sucrose content (Fig. 3). In contrast, the transcription levels of StSUT2 and StSUT4 were 21 

greatly decreased (Table 4). Sucrose transporters are known to be regulated by 22 

phosphorylation [22], however, co-immunoprecipitation assays did not reveal any direct 23 

interaction between AtPAP2 and StSUT1 (Fig. S6).  24 

Many plant PAPs mediate phosphorus acquisition and redistribution based on their ability to 25 

hydrolyze phosphorus compounds [3]. AtPAP2 is a phosphatase anchored on the outer 26 

membrane of chloroplasts and mitochondria [4]. Theoretically, overexpression of a 27 

phosphatase in cytosol may supply additional phosphate as a counter-exchange substrate for 28 

the triose phosphate/phosphate translocator (TPT) on chloroplasts to facilitate higher export 29 

of triose phosphates to cytosol for sucrose synthesis. This, however, is unlikely the reason for 30 

higher tuber yield in the AtPAP2 OE lines. First, the Pi content was not significant changed 31 

in our OE lines (Table. S2). Second, overexpression of a soluble E. coli pyrophosphatase, 32 
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(PPase) which could generate more phosphates by hydrolyzing pyrophosphates, in the 1 

cytosol of leaf cells did not lead to increase in tuber yield [23]. 2 

 3 

Changes in carbon flow and sink/source activities could affect floral, architectural, and 4 

reproductive traits of plants. In potato, the tuber yield could be improved by simultaneously 5 

genetically modifying source and sink strengths by sucrose transporter [18] . The potato sink 6 

strength is defined as the ability to attract photoassimilates, and the sink strength of growing 7 

potato tubers was assumed to be limited by metabolism and/or starch synthesis [24]. Sink 8 

strength had been concluded to be a more important factor than source strength on tuber yield 9 

[23].  In that study, the tuber yield was enhanced in the PGN and AGN lines. Sugar contents 10 

in phloem were higher but the leaf starch was lower in the transgenic lines, reflecting an 11 

increase in sink strength in tuber could redistribute the carbohydrates from source (leaf starch) 12 

to tuber starch. The authors also produced transgenic lines with enhanced source strength by 13 

overexpressing E. coli PPase in potato leaf [23]. While some transgenic lines exhibited higher 14 

PPase activities, higher sugars and lower starch in leaves, the tuber yield did not increase. 15 

The author therefore concluded that tuber yield is sink-limited, and that an additional 16 

enhancement of source capacity could further increase yield [23]. However, it should be 17 

noted that the photosynthesis rates of the AGN lines were not enhanced, and the sugar 18 

contents in the petioles and tubers of the PPase overexpression lines were not measured. Thus 19 

the potential of increasing tuber yield by enhancing photosynthesis rate in source leaf and/or 20 

sugar export from source leaf cannot be ruled out.  21 

In this study, overexpression of AtPAP2 could improve source capacity by improved 22 

photosynthesis rate, elevated SPS activity, and sugar efflux rate in the leaves. Increased 23 

photosynthesis in the source tissues could also potentially improve the adenylate pools in the 24 

potato leaves [25].  Increased adenylate pools have previously been demonstrated to increase 25 

the potato tuber yield in experiments in which the activity of the plastidial adenylate kinase 26 

was altered [26]. ATP and adentylate pools were shown to be significantly increased in the 27 

rosette leaves of AtPAP2 OE Arabidopsis lines [9]. Meanwhile, the expression levels and 28 

enzyme activity of SPS were also significantly elevated in the AtPAP2 OE lines, which could 29 

be expected to supply more sucrose for export and anabolism. Similar to the situation 30 

observed following up-regulated expression of the sucrose transporter [18], overexpression of 31 

AtPAP2 resulted in an increased sugar efflux, improved photosynthesis and faster plant 32 

growth rate. In addition, coupled to the accumulation of soluble sugars in the tuber, the total 33 
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tuber yield and tuber starch content were improved in our OE lines. These data indicate an 1 

enhanced sink strength. We believe both (limited by sink and promoted by source) are valid 2 

as nature in generally does not follow all-or-none principle. We deduced that overexpression 3 

of AtPAP2 improves the source capacity and sink strength of potatoes by indirectly regulating 4 

the expression of SPS and sucrose transporters.  5 

 6 
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Figure Legends 15 

 16 

Fig 1. Growth phenotypes of 40-day-old plants. All three high AtPAP2 OE lines produced 17 

more branches than the WT.  18 

 19 

Fig 2. Assimilation rates of potato plants. Assimilation rates (μmol CO2 m-2 s-1) were 20 

measured on leaves 3-4 from the top of 65- to 68-d-oldplants. Assimilation rates at different 21 

actinic light intensities (0-1000 µmol photons m-2 s-1) were normalized to leaf area.  22 

 23 

Fig 3. Sugar contents in leaves, petioles and tubers of second generation plants. The 24 

leaves of OE lines exhibited low sucrose, glucose and fructose contents. However, the 25 

petioles of OE lines contained higher sucrose, glucose and fructose content and the tuber OE 26 

lines shows higher sucorse, glucose and fructose contents.  Within each column, the values 27 

are the fold change of OE lines compare with wild type.  DW- dry weight, FW- fresh weight.   28 

 29 

Fig. 4. Western blotting analysis of proteins involved in the sucrose synthesis. Total 30 

soluble protein extracts were from 70-day-old second generation plants in the middle of day. 31 
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Vector is the transgenic potato lines by empty vector pBA002; SPS, sucrose phosphate 1 

synthase; NR, nitrate reductase; StSUT1, Solanum tuberosum sucrose transporter 1; cFBPase, 2 

cytosolic fructose-1,6-bisphosphatase; Anti-cFBPase, anti-NR and anti-SPS antibodies were 3 

obtained from Agrisera; Anti-StSUT1 antibody was provided by Dr. Christina Kuhn 4 

(Humboldt University Berlin, Germany); AtPAP2, anti-AtPAP2 specific antibody; Anti-14-5 

3-3 antibody was from Prof. Carol MacKintosh. Excess 14-3-3 recombinant protein was 6 

loaded on the GST beads and mixed with 0.5 mg total plant protein extracts, the washed and 7 

bound proteins were eluted for Western blotting analysis using the anti-SPS antibody.  8 

 9 

 10 
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Table 1. Flowering time of the transgenic potatoes 

Solanum tuberosum var. Bintje  

  WT Vector OE1 OE4 OE7 OE10 

Flowering time (day) 81 ± 0.7a 89 ± 0.5b 43 ± 0.8d 44 ± 0.9d 45 ± 1.3d 73 ± 0.8c 

S.tuberosum cv. Desirée  

  WT OE1 OE2 OE3     

Flowering time (day） 54.5 ± 1.6a  38 ± 1.6b 37.7 ± 1.4b  38 ± 1.2b     

Second generation potatoes (Solanum tuberosum var. Bintje) were grown from September 2010 to December 2010 in greenhouse (SD, Hong Kong). Potatoes 

(S.tuberosum cv. Desirée) were grown under LD conditions [16 h light period (100-200 µE m-2s-1), 25°C and 8 h darkness, 20°C, greenhouse, Potsdam-Golm, 

Max Planck Institute for Molecular Plant Physiology]. Throughout the light-dark cycle relative humidity was kept at 50 %. The values marked by different 

letters (a, b, c) are significantly different (p < 0.05), n = 4~6. 
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Table 2. Tuber yield of the transgenic potatoes  

Second generation (S. tuberosum var. Bintje, SD) 

  WT Vector OE1 OE4 OE7 OE10 

Tuber number/plant 2a 2a 3 ± 0.8b 3b 2.8 ± 0.5ab 2.0 ± 0.8ab 

Average weight/tuber, FW 7.4 ± 1a 12.5 ± 1.3ab 18.6 ± 2.9cd 15.3 ± 3.0bc 21.6 ± 2.8d 11.4 ± 5.2ab 

Tuber weight/plant, FW 14.8 ± 2a 25.1 ± 2.6ab 55.9 ± 16.4c 45.9 ± 9.1bc 60.2 ± 16.7c 20.7 ± 8.7a 

Root Biomass/plant, DW 0.4 ± 0.1a 0.3 ± 0.1a 1.4 ± 0.4b 0.5 ± 0.2a 1.1 ± 0.3b 0.4 ± 0.3a 

Aboveground Biomass /plant, 

DW 
2.9 ± 0.3a 2.9 ± 0.7a 5.1 ± 0.6c 3.7 ± 0.7b 4.6 ± 0.6bc 2.9 ± 0.5a 

Leaf Biomass/Plant, DW 1.8 ± 0.3a 1.8 ± 0.6a 2.7 ± 0.2ab 2.3 ± 0.7ab 2.7 ± 0.7ab 1.9 ± 0.3a 

Petioles Biomass/plant, DW 1.1 ± 0.2a 1.1 ± 0.2a 2.4 ± 0.5c 1.6 ± 0.4ab 2.0 ± 0.2bc 1.1 ± 0.3a 

Third generation (S. tuberosum var. Bintje, LD) 

  WT OE1 OE3 OE4 OE7 OE10 

Tuber number/plant 3 15 15 22 18 20 

Tuber weight (g)/plant, FW 107.5 258.5 270.2 300.9 275.9 241.3 

Tuber yield and starch content of a different cultivar (S.tuberosum cv. Desirée, LD) 

  WT OE1 OE2 OE3 

Tuber number/plant 6.3 ±1.4a 11.5 ± 1.8b 9.8 ± 0.8b 10.3 ±1.4b 

Tuber weight (g/plant), FW 176.0 ± 20.7a 281.4 ± 17.8b 267.8 ± 14.5b 252.5 ± 17b 

Tuber weight (g/plant), DW 25.0 ± 2.9a 53.9 ±3.4b 52.7 ± 2.9b 48.0 ± 3.2b 

Tuber Water content (mg/g), 

FW 
857.8 ± 8.2a 806.6 ± 4.1b 803.0 ± 13.2b 811.1 ± 15.2b 

Starch content (µmol Glucose 

/g), FW 
351.7 ± 7.7a 416.8 ± 9.9b 429.9 ± 8.9b 419.13 ± 5.3b 

Tubers > 1g was measured. Samples were collected from 4 - 6 independent plants after the decay of the shoots following a 4-month growth period. The 

second generation potato (S. tuberosum var. Bintje) was grown in short day condition in Hong Kong and the third generation was grown in long day condition 

in University of Potsdam, Golm.  Potatoes (S.tuberosum cv. Desirée) were grown under controlled conditions from November 2013 to February. 2014 [16 h 
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light period (100-200 µE m-2s-1), 25°C and 8 h darkness, 20°C, greenhouse, Potsdam-Golm, Max Planck Institute for Molecular Plant Physiology]. 

Throughout the light-dark cycle relative humidity was kept at 50 %. 100mg fresh sample of developing tuber was lyophilized before measurement of dry 

weight and water content. Compared with that of the wild type, tubers of OE lines showed decreased water content but improved tuber weight and starch 

content. Starch content was measured by 10 mg fresh potato tubes. Within each column, the values marked by different letters (a, b, c) are significantly 

different (p < 0.05), n = 4~6. DW, dry weight (g); FW, fresh weight (g). 

 

 

 

 

 

 

 

 

 

Table 3. SPS Enzyme activity analysis 

µM sucrose/µg protein/hour WT Vector OE 1 OE 4 OE 7 OE 10 

Vmax 139 ± 4a 147 ± 4ab 168 ± 6c 163 ± 13c 162 ± 9c 155 ± 6c 

Vlimit 73 ± 3a 83 ± 5b 97 ± 2c 93 ± 7c 93 ± 6bc 90 ± 5bc 

The third and the fourth fully mature leaves were used for SPS enzyme activity analysis after the photosynthesis measurement. Within each column, the 

values marked by different letters (a, b) are significantly different (p < 0.05), n = 5. 
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Table 4. Relative transcriptional levels of sucrose transporters 

 WT Vector OE1 OE4 OE7 OE10 

StSUT1 1.00 ± 0.01a 1.31 ± 0.01b 1.53 ± 0.01b 1.07 ± 0.02a 1.21± 0.01ab 1.03 ± 0.01a 

StSUT2 1.00 ± 0.01a 1.02 ± 0.01a 0.36 ± 0.01b 0.25 ± 0.01b 0.23 ± 0.01b 0.07 ± 0.01c 

StSUT4 1.00 ± 0.02a 0.74 ± 0.01ab 0.57 ± 0.02b 0.58 ± 0.01b 0.45 ± 0.02b 0.08 ± 0.01c 

The third and the fourth 70-days-old mature leaves were used for real-time PCR analysis. RQ, the gene relative expression to WT was calculated using the 

equation: 2-(△△CT). Within each column, the values marked by different letters (a, b, c) are significantly different (p < 0.05), n = 3.  
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