12 research outputs found
Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector
Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.Cheryl Y. Brown, Timothy Sadlon, Tessa Gargett, Elizabeth Melville, Rui Zhang, Yvette Drabsch, Michael Ling, Craig A. Strathdee, Thomas J. Gonda, and Simon C. Barr
PI16 is expressed by a subset of human memory Treg with enhanced migration to CCL17 and CCL20
The peptidase inhibitor PI16 was shown previously by microarray analysis to be over-expressed by CD4-positive/CD25-positive Treg compared with CD4-positive/CD25-negative Th cells. Using a monoclonal antibody to the human PI16 protein, we found that PI16-positive Treg have a memory (CD45RO-positive) phenotype and express higher levels of FOXP3 than PI16-negative Treg. PI16-positive Treg are functional in suppressor assays in vitro with potency similar to PI16-negative Treg. Further phenotyping of the PI16-positive Treg revealed that the chemokine receptors CCR4 and CCR6 are expressed by more of the PI16-positive/CD45RO-positive Treg compared with PI16-negative/CD45RO-positive Treg or Th cells. PI16-positive Treg showed enhanced in vitro migration towards the inflammatory chemokines CCL17 and CCL20, suggesting they can migrate to sites of inflammation. We conclude that PI16 identifies a novel distinct subset of functional memory Treg which can migrate to sites of inflammation and regulate the pro-inflammatory response at those sites.Ian C. Nicholson, Christos Mavrangelos, Daniel R.G. Bird, Suzanne Bresatz-Atkins, Nicola G. Eastaff-Leung, Randall H. Grose, Batjargal Gundsambuu, Danika Hill, Debbrah J. Millard, Timothy J. Sadlon, Sarah To, Heddy Zola, Simon C. Barry, Doreen Krumbiege
Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes
Members of ENDIA Study Group: Peter Baghurst, Simon Barry, Jodie Dodd, Maria Makrides for the University of Adelaide.BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.Megan AS Penno, Jennifer J Couper, Maria E Craig, Peter G Colman, William D Rawlinson, Andrew M Cotterill, Timothy W Jones, Leonard C Harrison and ENDIA Study Grou
Development of CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor cells
Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrat
The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation
Granulocyte–macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.
Genome-wide identification of human FOXP3 target genes in natural regulatory T cells
The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3⁺ Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25⁺FOXP3⁺ Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.Timothy J. Sadlon, Bridget G. Wilkinson, Stephen Pederson, Cheryl Y. Brown, Suzanne Bresatz, Tessa Gargett, Elizabeth L. Melville, Kaimen Peng, Richard J. D’Andrea, Gary G. Glonek, Gregory J. Goodall, Heddy Zola, M. Frances Shannon and Simon C. Barr
Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7
Abstract Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients’ own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans
Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH
Haem is essential for the health and function of nearly all cells. 5-Aminolaevulinic acid synthase-1 (ALAS-1) catalyses the first and rate-controlling step of haem biosynthesis. ALAS-1 is repressed by haem and is induced strongly by lipophilic drugs that also induce CYP (cytochrome P450) proteins. We investigated the effects on the avian ALAS-1 gene promoter of a phenobarbital-like chemical, Glut (glutethimide), and a haem synthesis inhibitor, DHA (4,6-dioxoheptanoic acid), using a reporter gene assay in transiently transfected LMH (Leghorn male hepatoma) hepatoma cells. A 9.1 kb cALAS-1 (chicken ALAS-1) promoter-luciferase-reporter construct, was poorly induced by Glut and not by DHA alone, but was synergistically induced by the combination. In contrast, a 3.5 kb promoter ALAS-1 construct was induced by Glut alone, without any further effect of DHA. In addition, exogenous haem (20 microM) repressed the basal and Glut- and DHA-induced activity of luciferase reporter constructs containing 9.1 and 6.3 kb of ALAS-1 5'-flanking region but not the construct containing the first 3.5 kb of promoter sequence. This effect of haem was subsequently shown to be dependent on the -6.3 to -3.5 kb region of the 5'-flanking region of cALAS-1 and requires the native orientation of the region. Two deletion constructs of this approx. 2.8 kb haem-repressive region (1.7 and 1.1 kb constructs) retained haem-dependent repression of basal and drug inductions, suggesting that more than one cis-acting elements are responsible for this haem-dependent repression of ALAS-1. These results demonstrate that there are regulatory regions in the 5'-flanking region of the cALAS-1 gene that respond to haem and provide a basis for further investigations of the molecular mechanisms by which haem down-regulates expression of the ALAS-1 gene.Sridevi Kolluri; Timothy J. Sadlon; Brian K. May and Herbert L. Bonkovsk
The GM-CSF receptor utilizes beta-catenin and Tcf4 to specify macrophage lineage differentiation
Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.Anna L. Brown, Diana G. Salerno, Teresa Sadras, Grant A. Engler, Chung H. Kok, Christopher R. Wilkinson, Saumya E. Samaraweera, Timothy J. Sadlon, Michelle Perugini, Ian D. Lewis, Thomas J. Gonda, Richard J. D'Andre