471 research outputs found

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    A hybrid radiation detector for simultaneous spatial and temporal dosimetry

    Get PDF
    In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation

    Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s disease provides in vivo evidence for impaired energy metabolism

    Get PDF
    Huntington’s disease (HD) is a neurodegenerative genetic disorder that affects the brain. Atrophy of deep grey matter structures has been reported and it is likely that underlying pathologic processes occur before, or in concurrence with, volumetric changes. Measurement of metabolite concentrations in these brain structures has the potential to provide insight into pathological processes. We aim to gain understanding of metabolite changes with respect to the disease stage and pathophysiological changes. We studied five brain regions using magnetic resonance spectroscopy (MRS) using a 7-Tesla MRI scanner. Localized proton spectra were acquired to obtain six metabolite concentrations. MRS was performed in the caudate nucleus, putamen, thalamus, hypothalamus, and frontal lobe in 44 control subjects, premanifest gene carriers and manifest HD. In the caudate nucleus, HD patients display lower NAA (p = 0.009) and lower creatine concentration (p = 0.001) as compared to controls. In the putamen, manifest HD patients show lower NAA (p = 0.024), lower creatine concentration (p = 0.027), and lower glutamate (p = 0.013). Although absolute values of NAA, creatine, and glutamate were lower, no significant differences to controls were found in the premanifest gene carriers. The lower concentrations of NAA and creatine in the caudate nucleus and putamen of early manifest HD suggest deficits in neuronal integrity and energy metabolism. The changes in glutamate could support the excitotoxicity theory. These findings not only give insight into neuropathological changes in HD but also indicate that MRS can possibly be applied in future clinical trails to evaluate medication targeted at specific metabolic processes

    Prospective object search in dogs: mixed evidence for knowledge of What and Where

    Get PDF
    We investigated whether two dogs that had been specially trained to retrieve objects by their names were able to integrate information about the identity (What) as well as the location (Where) of those objects so that they could plan their search accordingly. In a first study, two sets of objects were placed in two separate rooms and subjects were asked to retrieve the objects, one after the other. Both dogs remembered the identity of the objects as they reliably retrieved the correct objects. One of the dogs was also able to integrate information about the object’s location as he chose the correct location in which the object had been placed. Further investigation of the second dog’s behavior revealed that she followed a more stereotyped search strategy. Despite this variation in performance, this study provides evidence for the memory of What and Where in a domestic dog and shows the prospective use of such information in a search task

    Longitudinal in vivo MRI in a Huntington’s disease mouse model: global atrophy in the absence of white matter microstructural damage

    Get PDF
    Huntington’s disease (HD) is a genetically-determined neurodegenerative disease. Characterising neuropathology in mouse models of HD is commonly restricted to cross-sectional ex vivo analyses, beset by tissue fixation issues. In vivo longitudinal magnetic resonance imaging (MRI) allows for disease progression to be probed non-invasively. In the HdhQ150 mouse model of HD, in vivo MRI was employed at two time points, before and after the onset of motor signs, to assess brain macrostructure and white matter microstructure. Ex vivo MRI, immunohistochemistry, transmission electron microscopy and behavioural testing were also conducted. Global brain atrophy was found in HdhQ150 mice at both time points, with no neuropathological progression across time and an elective sparing of the cerebellum. In contrast, no white matter abnormalities were detected from the MRI images or electron microscopy images alike. The relationship between motor function and MR-based structural measurements was different for the HdhQ150 and wild-type mice, although there was no relationship between motor deficits and histopathology. Widespread neuropathology prior to symptom onset is consistent with patient studies, whereas the absence of white matter abnormalities conflicts with patient data. The myriad reasons for this inconsistency require further attention to improve the translatability from mouse models of disease

    Bonobos, chimpanzees, gorillas, and orang utans use feature and spatial cues in two spatial memory tasks

    Get PDF
    Animals commonly use feature and spatial strategies when remembering places of interest such as food sources or hiding places. We conducted three experiments with great apes to investigate strategy preferences and factors that may shape them. In the first experiment, we trained 17 apes to remember 12 different food locations on the floor of their sleeping room. The 12 food locations were associated with one feature cue, so that feature and spatial cues were confounded. In a single test session, we brought the cues into conflict and found that apes, irrespective of species, showed a preference for a feature strategy. In the second experiment, we used a similar procedure and trained 25 apes to remember one food location on a platform in front of them. On average, apes preferred to use a feature strategy but some individuals relied on a spatial strategy. In the final experiment, we investigated whether training might influence strategy preferences. We tested 21 apes in the platform set-up and found that apes used both, feature and spatial strategies irrespective of training. We conclude that apes can use feature and spatial strategies to remember the location of hidden food items, but that task demands (e.g. different numbers of search locations) can influence strategy preferences. We found no evidence, however, for the role of training in shaping these preferences

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure
    corecore