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Abstract 

In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements 

and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. 

This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being 

acquired by the scintillator and spatial measurements acquired with the gel dosimeter.  The detectors employed in 

this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field 

of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can 

now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation.   
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Introduction 

With the increasing clinical use of radiotherapy techniques that rely on the accurate spatial and temporal 

variation of dose delivery 
[1-5]

  there is a growing need for the ability to fully characterise a radiation field, in four 

dimensions.    

Contemporary radiation detectors are capable of measuring radiation dose in one, two, or three dimensions. 

For example, dosimeters utilizing Fricke solution 
[6-8]

 , polymers 
[9-16]

 and dyed plastics 
[17, 18]

 have been successful in 

measuring radiation dose in three dimensions but not temporally. Electronic portal imaging devices (EPIDs) based 

on fluoroscopic 
[19, 20]

 or solid-state radiation detection 
[21]

, as well as planar detector arrays 
[22]

 are capable of 

measuring radiation fields in two spatial dimensions. Recently, diode-array based detectors have been developed 

which are designed to provide three-dimensional evaluations of delivered dose 
[23, 24]

. All of these dosimeter-array-

based systems, including EPIDs, are capable of providing information regarding the variation of the radiation beam 

with time; however all of these systems (including those specifically designed to measure in three-dimensions) use 

back-projection techniques, rather than explicit three-dimensional measurement, to provide three-dimensional 

dosimetric information 
[23-25]

.  

To date there has been no dosimetry system for measuring radiation dose in three spatial dimensions as 

well as time. An intermediate solution would be to combine two different radiation detection systems which are 

radiologically similar, to measure different characteristics of the same radiation field. This technique requires that 

each detector used must not perturb the measurement of the other. In this feasibility study we combine an organic 

plastic scintillator for temporal measurements with a polymer gel dosimeter for 3D spatial measurements to produce 

a quasi four-dimensional hybrid radiation dosimetry system.  

 

Methods and Materials 

The dosimetry was achieved by combing a BC-428 organic plastic scintillator rod of 5mm diameter and 

6mm length (Saint Gobain, Paris) for temporal measurements, with a PAGAT polymer gel dosimeter 
[16]

 for spatial 
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measurement. The densities of the PAGAT 
[16]

 gel dosimeter and organic plastic scintillators are closely matched at 

1.026 ± 0.02 
[16]

 and 1.032 g/cm
3
 
[26]

 respectively and a previous Monte Carlo study has shown that these two 

detectors are dosimetrically similar 
[27]

. The scintillator was optically coupled to a S2386-44K photodiode 

(Hammamatsu, Japan) and electronic circuitry similar to that described elsewhere 
[28]

. Both the scintillator and the 

gel dosimeter were encased in an acrylic cylinder container of 13 cm outer diameter and 15 cm length, with walls of 

5 mm thickness.  

Dose and dose rate responses of the scintillator were calibrated with a 6 MV photon beam produced using a 

Clinac 6EX (Varian Inc., CA, USA) clinical linear accelerator. The scintillator was positioned on-axis within a 

Virtual Water (Standard Imaging, WI, USA) phantom at 100 cm SSD, a depth of 4.5 cm and irradiated with a 3   3 

cm field. The scintillator was then irradiated at various dose rates as shown in figure 2 by varying the monitor units 

per minute and compared to calibrated ionization chamber data. The signal was taken as the mean output frequency 

of the detector electronics 
[28]

 sampled at regular intervals and the uncertainty was the standard deviation of the 

measurements. An angle of 90 degrees between the axis of the beam and the fibre optic coupling was maintained. 

After calibration, the scintillator was secured in place at the central axis of the cylindrical acrylic container at a 

location 3cm from the end wall, and such that the optical coupling fibre penetrated the outer wall of the container at 

the same height as shown in figure 1. 

The gel dosimeter was manufactured according to the composition published by Venning et al 
[16]

, however 

the concentration of Tetrakis Hydroxy Phosphonium Chloride was increased to 8 mM for improved stability 
[29]

 as 

shown at Table 1. Before cooling and setting, the gel dosimeter was poured into the acrylic container containing the 

scintillator so that the scintillator was completely immersed as shown in Figure 1. The container was then placed in 

a refrigerator and stored at 4°C for 24 hours to allow the gel dosimeter to set, after which it was pre-scanned in an 

MGS Research IQScan optical CT scanner (MGS Research, (Madison, CT, USA). 

The container enclosing the scintillator and gel dosimeter was then irradiated with two 3 cm   3 cm 6 MV 

X-ray beams from the same linear accelerator that was used for calibration of the scintillator, with 2cm of solid 

water placed on top of the container. This ensured that any effects of Cerenkov radiation equally applied to both the 

calibration and the irradiation. Both radiation beams were delivered to the same location and orientation (centrally 
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along the cylindrical axis); however the radiation output of the linear accelerator was varied so that they produced 

2.50 ± 0.03 Gy/minute for 60 seconds and 5.00 ± 0.05 Gy/minute for 30 seconds at the scintillator respectively, 

giving a total dose of 5 Gy. Because the scintillator and sheath were directly in conact with the gel dosimeter, 

electronic equilibrium was not disturbed at the boundary as shown previously
[27]

. The dose rates of the beams were 

measured with the scintillator at the time of delivery. It has been shown 
[30, 31]

  that dose rate effects within PAGAT 

gel dosimeters are negligible for the range of  dose rates and total dose delivered in this experiment. 

After 24 hours the container enclosing the gel dosimeter and the scintillator was scanned in a MGS 

Research IQScan optical CT scanner (Madison, CT, USA). The pre-scan data was then subtracted prior to image 

reconstruction to remove any optical inhomogeneities in the gel. Data processing was performed using Matlab (The 

Mathworks, USA). 

Results 

Figure 2 shows the calibration data for the scintillator and shows an increasing response of output with 

respect to increasing dose rate. The data provides an R
2
 value of 0.998 and p value of 6   10

-7
 for a 95% confidence 

level. From this data we make the assumption of a linear dose rate response of the total scintillator measurement for 

those dose rates employed in this work. Possible contributions from Cerenkov radiation to the signal are discussed in 

the following section. 

Figure 3 qualitatively demonstrates the spatial distribution provided by the gel dosimeter, showing an 

isosurface representation of the reconstructed optical CT image, with contours selected at 64% and 83% of dmax. 

When using this technique to analyse a radiation field one would select contours at whichever level is required for 

purpose. Acquisition of optical CT data in slices occupied by the scintillator is corrupted as the scintillator and 

masking sheath is optically opaque and thus leads to artefacts arising from the undersampling of projections through 

these slices. Therefore slices corresponding to the scintillator and those immediately surrounding have been 

removed from figure 3. The data loss is an artefact only and in practical use the scintillator is recommended to be 

placed away from key locations in the radiation field to ensure no loss of critical spatial data.  
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Figure 4 shows the temporal radiation dose measurement at the location of the scintillator. The temporal 

scintillator data clearly shows the presence of two beams at different times, intensities, and duration. Because the 

scintillator has been pre-calibrated, the measured data will also indicate any errors in the output of the linear 

accelerator, both in radiation dose rate or exposure time. This would not otherwise be apparent in a 3D gel dosimeter 

measurement alone. Noise in the figure is due to quantum noise in the detector electronics as well as contributions 

from beam fluctuations at the time of sampling.  

Ideally, the measurements of each detector should not be perturbed by the presence of the other. For 

example, if the scintillator was of a significantly different density, the radiation dose received by the gel dosimeter 

would show a ‘shadow’ of the scintillator in critical ‘downstream’ regions. Figure 5 shows comparative plots of the 

optical density of the gel dosimeter along the direction of the radiation beam, with error bars representing the 

standard deviation of the surrounding 3 mm   3 mm region. Represented in the figure are depth dose data along the 

central axis of the beam which passes through the centre of the scintillator, and off axis data located within the 

radiation field in the gel dosimeter but not passing through the scintillator. The figure clearly shows the expected 

depth-dose curve as the beam transits the gel dosimeter in both sets of data located within the radiation field with a 

loss of data in the slices corresponding to the location of the scintillator. There is a region of reduced gel response 

immediately surrounding the location of the scintillator. Oxygen contamination decreases the sensitivity of polymer 

gel dosimeters 
[14]

 and it is likely that the presence of the scintillator and sheath in the gel allowed diffusion of 

oxygen in the time between manufacture, irradiation and imaging, thus suppressing the response of the gel to 

radiation.  Previous studies with acyrlamide based gels have shown that oxygen diffuses at a rate of 8 (±2) x 10
-6

 

cm
1
 s

-1
.
[32]

.  At regions of further depth the depth dose data for both in-field measurements match, thus showing 

negligible perturbation of dose further downstream by the scintillator. Therefore, these results suggest that this 

technique would be suitable for use providing the scintillator is placed further than 1cm from critical regions in the 

irradiation. 
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Discussion 

The interpretation of the data from these measurements will naturally depend on the response 

characteristics of each of the detectors; good practice would therefore necessitate each detector to be fully 

characterised before use. For example, the PAGAT type gel dosimeter used here for the 3D spatial dose mapping 

has previously been shown to have an asymptotic relationship to total dose 
[16]

; conversions of optical density data, 

shown in Figure 3, to dose must therefore account for this relationship. It should be noted however that in PAGAT 

gel dosimeters a linear relationship between optical density and dose is generally assumed up to 7 Gy 
[16]

; the 

maximum dose used here was less than this amount and therefore a linear dose response has been approximated in 

this work. 

In addition to providing quasi-4D dosimetry, this method enhances traditional gel dosimetry measurements 

by enabling a calibrated dose point to be acquired within the gel itself. Previously gel dosimeters have been 

restricted to either relative dose measurements or calibration via secondary methods such as separate vials or re-

production of  an identical gel in a second container, both methods of which may affect the response of the gel 

dosimeter through variations in chemical composition, temperature history 
[33-35]

 or dose inaccuracies resulting from  

varying scatter conditions in different container geometries 
[36, 37]

. Furthermore, Taylor et al 
[36, 37]

 have shown that a 

single large container is the most dosimetrically accurate geometry for gel dosimetry; inclusion of both detectors in 

the same volume ensures the most accurate results. Therefore, the inclusion of a plastic scintillator in a large 

container provides the opportunity for absolute dose measurements with gel dosimetry. Future work is required to 

refine the technique used in this feasibility study, for example the reduction of oxygen contamination at the 

immediate surrounds of the scintillator requires attention.  

The extraction of the dose information is not restricted to optical computed tomography, for example, it has 

been shown that there is minimal interference with MRI image quality with the presence of a scintillating fibre 

within a gel dosimeter 
[38, 39]

 The detectors that can be used in this technique are not restricted to those employed 

here, for example, an excellent candidate for the 3D spatial detector would be polyurethane PRESAGE dosimeters 

[17]
 which would alleviate the requirement to remove data close to the scintillator and walls due to oxygen 

contamination. Similarly, for the nuclear industry and other industrial uses, detectors such as the RadBall 
[40, 41]

could 
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provide a suitable spatial detector, or in the case of very high dose rate materials such as plastics 
[42]

 have been 

shown to react to ionising radiation and would combine well with the temporal measurements of an organic plastic 

scintillator. 

The existence of Cerenkov radiation in the scintillator and optical fibre will cause an additional component 

to the signal. Several authors have discussed approaches to reduce interference of Cerenkov radiation in plastic 

scintillator measurements 
[43-46]

. In our case the effects of Cerenkov radiation within the scintillator and optical fibre 

was minimized due to a 90 degrees irradiation angle and selection of components spectrally incompatible with 

Cerenkov light; however it is likely that the measured signal does contain a component of Cerenkov radiation. 

Because the same volume of optical coupling fibre (and full volume of the scintillator) was irradiated in both the 

calibration and the container irradiation, the same proportion of Cerenkov radiation occurred on both occasions and 

thus the calibration is adequate for this equivalent geometry and beam energy. Therefore, for the technique 

described in this work to be reliable it requires that the same volume of scintillator and optical fibre be irradiated at 

calibration and use. For applications where a different amount of the optical coupling fibre is irradiated by each 

beam (for example IMRT), an alternative Cerenkov rejection approach should be used 
[46-48]

. 

Conclusion 

In this work we have shown that the combination of two radiation detectors, one providing a 3D spatial 

mapping of dose and one providing temporal variation in dose rate, can be used to produce a 4D-hybrid radiation 

detection system. Typically, a gel dosimeter only provides dose information integrated over time, thus temporal 

information is lost. This work shows that the novel addition of temporal information to integrating 3D spatial 

dosimetry has been demonstrated to be feasible. This technique will provide a valuable means to fully characterize 

ionizing radiation fields.    
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Figure Captions 

Figure 1. The scintillator/gel dosimeter immediately after irradiation. Two beams of different intensities 

were used and neither the container nor linear accelerator were moved between beams, therefore both 

beams irradiated the system in identical geometry. The optical changes to the gel dosimeter resulting from 

the radiation dose can be seen along the central axis of the container. 

Figure 2.  Data for the calibration of the organic plastic scintillator. The scintillator system outputs a signal 

whose frequency varies with dose. A linear response is noted for the range of dose rates covered in this 

work. 

Figure 3.  Typical 3D isosurfaces acquired from the post irradiation optical CT image of the gel dosimeter as 

located in the container (blue). Because the optical density is proportional to radiation dose, the isosurface 

can be converted to a dose contour. In this case the green surface represents 64% of the maximum dose and 

the (darker) red represents 83% of the maximum dose.   

Figure 4. Temporal organic plastic scintillator measurement during the irradiation of the container. 

Although the same dose was delivered with each beam, the dose rate and time was varied.  

Figure 5.  Changes in the gel dosimeter optical density along the axis of the cylinder. The upper panel shows 

the optical CT data for two sets of in-field data: one intersecting the scintillator and the other within the 

radiation field but not intersecting the scintillator. The bottom panel shows the difference between the two 

data sets.  
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Table 1 – Composistion of 1 kg of PAGAT gel dosimeter 

Component 

Water  859.5 g 

Gelatin 300 Bloom Type A  50 g 

N,N’ Methylene bis acrylamide 45 g 

Acrylamide 45 g 

Hydroquinone 0.001 g 

Tetrakis Hydroxy Phosphonium Chloride 1.0 g 
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