390 research outputs found
Different alterations of glomerular filtration rate and their association with uric acid in children and adolescents with type 1 diabetes or with overweight/obesity
GFR alterations were different between youths with T1D and with OW/OB. Higher uric acid, older age, and puberty were related to lower GFR values in OW/OB children. Longitudinal studies will determine if low GFR is consequence of a rapid GFR decline in pediatric patients with OW/OB. Keywords: children; diabetes; hyperfiltration; obesity; renal disease; uric acid
Association of glomerular hyperfiltration with serum chemokine levels and metabolic features in prepubertal children with overweight/obesity
Background and aims Glomerular hyperfiltration (GH) is proposed as one of the earliest events in obesity (OB)-associated renal disease. Children with GH and type-1 diabetes showed increased chemokine levels. Chemokine associations with glomerular filtration rate (GFR) and metabolic features in prepubertal children with overweight (OW)/OB are unknown. Methods and results Cross-sectional study. 75 prepubertal children (aged: 9.0 ± 1.7 years) with OW/OB were studied. Clinical and metabolic characteristics (including non-esterified fatty acids, NEFA) and GFR (combined Zappitelli equation) were assessed. GH was defined as GFR >135 ml/min.1.73 m2. Serum levels of regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5, interleukin-8 (IL-8)/CXCL8 and monokine-induced by interferon-γ (MIG)/CXCL9 were measured by ELISA. Age- and sex-adjusted correlations and differences were tested. 48% of the cohort was female and 13% were OW, 54% OB and 33% severe OB. Prepubertal children with GH showed lower z-BMI (−12%), NEFA (−26%) and uric acid (−22%) than those without GH (all p 0.05). Adjusted correlations were significant for RANTES and z-BMI (r = 0.26; p < 0.05) and for MIG with z-BMI (r = −0.26; p < 0.05) and with NEFA (r = 0.27; p < 0.05). Conclusion GH was not associated with higher chemokine levels in prepubertal children with OW/OB. Decreased rather than elevated GFR values were correlated with obesity and worse metabolic profiles. Chemokines levels in children with severe OB suggest a regulation of the immune response. Follow-up studies are needed to address the clinical implications of these findings. Keywords ObesityChildrenChemokinesHyperfiltrationRenal diseas
Superantigens from Staphylococcus aureus induce procoagulant activity and monocyte tissue factor expression in whole blood and mononuclear cells via IL-1beta.
Background: Staphylococcus aureus is one of the most common bacteria in human sepsis, a condition in which the activation of blood coagulation plays a critical pathophysiological role. During severe sepsis and septic shock microthrombi and multiorgan dysfunction are observed as a result of bacterial interference with the host defense and coagulation systems. Objectives: In the present study, staphylococcal superantigens were tested for their ability to induce procoagulant activity and tissue factor (TF) expression in human whole blood and in peripheral blood mononuclear cells. Methods and results: Determination of clotting time showed that enterotoxin A, B and toxic shock syndrome toxin 1 from S. aureus induce procoagulant activity in whole blood and in mononuclear cells. The procoagulant activity was dependent on the expression of TF in monocytes since antibodies to TF inhibited the effect of the toxins and TF was detected on the surface of monocytes by flow cytometry. In the supernatants from staphylococcal toxin-stimulated mononuclear cells, interleukin (IL)-1beta was detected by ELISA. Furthermore, the increased procoagulant activity and TF expression in monocytes induced by the staphylococcal toxins were inhibited in the presence of IL-1 receptor antagonist, a natural inhibitor of IL-1beta. Conclusions: The present study shows that superantigens from S. aureus activate the extrinsic coagulation pathway by inducing expression of TF in monocytes, and that the expression is mainly triggered by superantigen-induced IL-1beta release
The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function
C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper’-like protein assembly that synapses homologue pairs together and provides the structural framework for
processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here
we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes
an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation.This work was supported by BFU_2014-59307-R, MEIONet and JCyLe (CSI052U16). LGH and NFM are supported by European Social Fund/JCyLe grants (EDU/1083/2013 and EDU/310/2015). ORD is a Sir Henry Dale Fellow jointly funded by the Wellcome Trust and Royal Society (Grant Number 104158/Z/14/Z). RB is funded by DFG (grant Be1168/8-1). AT and ID were supported by DFG grants TO421/8-2 and TO421/6-1, respectively.Peer reviewe
Food consumption by degree of food processing and risk of type 2 diabetes mellitus: a prospective cohort analysis of the European Prospective Investigation into Cancer and Nutrition (EPIC)
Background:
It is unknown whether the association between ultra-processed food (UPF) intake and type 2 diabetes mellitus differs from other degrees of food processing. We examined the association between degree of food processing and incident type 2 diabetes mellitus.
Methods:
This was a prospective cohort analysis of the European Prospective Investigation into Cancer and Nutrition (EPIC). Dietary intake was assessed at baseline using dietary questionnaires and classified according to the Nova classification into unprocessed/minimally processed food (MPF), processed culinary ingredients (PCI), processed food (PF) and UPF. Type 2 diabetes mellitus cases were verified through multiple methods. Cox regression and statistical substitution analysis was used to estimate associations between MPF + PCI, PF and UPF intake and incident type 2 diabetes mellitus. To investigate heterogeneity in the association between UPF and incident type 2 diabetes mellitus, UPF sub-group analysis was conducted. Different reference groups were used in each analysis.
Findings:
Over an average 10.9 years follow-up of 311,892 individuals, 14,236 type 2 diabetes mellitus cases were identified. Each 10% increment of total daily food intake from UPF (%g/day) was associated with 17% (95% confidence interval (95%CI): 1.14–1.19) higher incident type 2 diabetes mellitus. Each 10% increment in MPF + PCI or PF intake was associated with lower incident type 2 diabetes mellitus (MPF + PCI hazard ratio: 0.94 (95%CI: 0.92–0.96); PF hazard ratio: 0.92 (95%CI: 0.89–0.95)). Replacing UPF with MPF + PCI or PF was associated with lower incident type 2 diabetes mellitus. However, heterogeneity was observed across UPF sub-groups, with breads, biscuits and breakfast cereals, sweets and desserts, and plant-based alternatives associated with lower incident type 2 diabetes mellitus.
Interpretation
These findings support recommendations to focus on reducing intake of specific UPF for lowering type 2 diabetes mellitus risk
TIA-1 Cytotoxic Granule-Associated RNA Binding Protein Improves the Prognostic Performance of CD8 in Mismatch Repair-Proficient Colorectal Cancer
Evidence suggests a confounding effect of mismatch repair (MMR) status on immune response in colorectal cancer. The identification of innate and adaptive immune cells, that can complement the established prognostic effect of CD8 in MMR-proficient colorectal cancers patients, representing 85% of all cases, has not been performed
Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis
A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination
- …