1,103 research outputs found
Status of the light ion source developments at CEA/Saclay
ACC NIMInternational audienceSILHI (High Intensity Light Ion Source) is an ECR ion source producing high intensity proton ordeuteron beams at 95 keV. It is now installed in the IPHI site building, on the CEA/Saclay center. IPHI is a frontend demonstrator of high power accelerator. The source regularly delivers more than 130 mA protons in CWmode and already produced more than 170 mA deuterons in pulsed mode at nominal energy. The last beamcharacterisations, including emittance measurements, space charge compensation analysis and diagnosticimprovements, will be reported. Taking into account the SILHI experience, new developments are in progress tobuild and test a 5 mA deuteron source working in CW mode. This new source will also operate at 2.45 GHz andpermanent magnets will provide the magnetic configuration. This source, of which the design will be discussed,will have to fit in with the SPIRAL 2 accelerator developed at GANIL to produce Radioactive Ion Beams. TheH- test stand status is briefly presented here and detailed in companion papers.This work is partly supported by the European Commission under contract n°: HPRI-CT-2001-50021
The Executive Director Experiences of African American Women in Mainstream Nonprofit Performing Arts Organizations
African American women are presently underrepresented in mainstream nonprofit performing arts organizations (PAOs) throughout the United States. Despite this inequality, a small number of African American women have overcome the odds and have productively earned senior leadership roles as executive directors in mainstream nonprofit PAOs. Using the conceptual frameworks of intersectionality and critical race feminism, the purpose of this study was to explore the shared lived experiences of African American women in executive director positions and the impact of race and gender on their leadership development and training for advancement in a mainstream nonprofit PAO. Four research questions explored the nonprofit management and leadership experiences and perspectives of African American women as a result of the intersection of race and gender identity. A transcendental phenomenological method was applied as the qualitative research design. Semistructured interviews with 9 African American women working currently or previously as an executive director or senior leader in a mainstream nonprofit PAO provided data collection. Findings from this study affirmed that although African American women are challenged and impacted by intersectional identities, organizational solutions and strategies for advancement are available. The results of this research study may contribute to positive social change by increasing awareness of the experiences of African American women and the strategies outlined for improved executive leadership advancement. When cultural arts leaders get information, ignored potential can be realized
Disorder-Driven Pretransitional Tweed in Martensitic Transformations
Defying the conventional wisdom regarding first--order transitions, {\it
solid--solid displacive transformations} are often accompanied by pronounced
pretransitional phenomena. Generally, these phenomena are indicative of some
mesoscopic lattice deformation that ``anticipates'' the upcoming phase
transition. Among these precursive effects is the observation of the so-called
``tweed'' pattern in transmission electron microscopy in a wide variety of
materials. We have investigated the tweed deformation in a two dimensional
model system, and found that it arises because the compositional disorder
intrinsic to any alloy conspires with the natural geometric constraints of the
lattice to produce a frustrated, glassy phase. The predicted phase diagram and
glassy behavior have been verified by numerical simulations, and diffraction
patterns of simulated systems are found to compare well with experimental data.
Analytically comparing to alternative models of strain-disorder coupling, we
show that the present model best accounts for experimental observations.Comment: 43 pages in TeX, plus figures. Most figures supplied separately in
uuencoded format. Three other figures available via anonymous ftp
First analysis of a numerical benchmark for 2D columnar solidification of binary alloys
International audienceDuring the solidification of metal alloys, chemical heterogeneities at the product scale (macrosegregation) develop. Numerical simulation tools are beginning to appear in the industry, however their predictive capabilities are still limited. We present a numerical benchmark exercise treating the performance of models in the prediction of macrosegregation. In a first stage we defined a "minimal" (i.e. maximally simplified) solidification model, describing the coupling of the solidification of a binary alloy and of the transport phenomena (heat, solute transport and fluid flow) that lead to macrosegregation in a fully columnar ingot with a fixed solid phase. This model is solved by four different numerical codes, employing different numerical methods (FVM and FEM) and various solution schemes. We compare the predictions of the evolution of macrosegregation in a small (10×6 cm) ingot of Sn-10wt%Pb alloys. Further, we present the sensitivities concerning the prediction of instabilities leading to banded channel mesosegregations
Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25
The presence of a di-unsaturated highly branched isoprenoid (HBI) lipid biomarker (diene II) in Southern Ocean sediments has previously been proposed as a proxy measure of palaeo Antarctic sea ice. Here we show that a source of diene II is the sympagic diatom Berkeleya adeliensis Medlin. Furthermore, the propensity for B. adeliensis to flourish in platelet ice is reflected by an offshore downward gradient in diene II concentration in >100 surface sediments from Antarctic coastal and near-coastal environments. Since platelet ice formation is strongly associated with super-cooled freshwater inflow, we further hypothesize that sedimentary diene II provides a potentially sensitive proxy indicator of landfast sea ice influenced by meltwater discharge from nearby glaciers and ice shelves, and re-examination of some previous diene II downcore records supports this hypothesis. The term IPSO25-Ice Proxy for the Southern Ocean with 25 carbon atoms-is proposed as a proxy name for diene II
Electro-thermal modelling for plasmonic structures in the TLM Method
This paper presents a coupled electromagnetic-thermal model for modelling temperature evolution in nano-size plasmonic heat sources. Both electromagnetic and thermal models are based on the Transmission Line Modelling (TLM) method and are coupled through a nonlinear and dispersive plasma material model. The stability and accuracy of the coupled EM-thermal model is analysed in the context of a nano-tip plasmonic heat source example
Drugs in early clinical development for the treatment of osteosarcoma
Introduction: Osteosarcomas are the main malignant primary bone tumours found in children
and young adults. Conventional treatment is based on diagnosis and resection surgery,
combined with polychemotherapy. This is a protocol that was established in the 1970s.
Unfortunately, this therapeutic approach has reached a plateau of efficacy and the patient
survival rate has not improved in the last four decades. New therapeutic approaches are thus
required to improve the prognosis for osteosarcoma patients.
Areas covered: From the databases available and published scientific literature, the present
review gives an overview of the drugs currently in early clinical development for the
treatment of osteosarcoma. For each drug, a short description is given of the relevant
scientific data supporting its development.
Expert opinion: Multidrug targeted approaches are set to emerge, given the heterogeneity of
osteosarcoma subtypes and the multitude of therapeutic responses. The key role played by the
microenvironment in the disease increases the number of therapeutic targets (such as
macrophages or osteoclasts), as well as the master proteins that control cell proliferation or
cell death. Ongoing phase I/II trials are important steps, not only for identifying new therapies
with greater safety and efficacy, but also for better defining the role played by the
microenvironment in the pathogenesis of osteosarcoma
In situ measurement of bovine serum albumin interaction with gold nanospheres
Here we present in situ observations of adsorption of bovine serum albumin (BSA) on citratestabilized
gold nanospheres. We implemented scattering correlation spectroscopy as a tool to
quantify changes in the nanoparticle Brownian motion resulting from BSA adsorption onto the
nanoparticle surface. Protein binding was observed as an increase in the nanoparticle
hydrodynamic radius. Our results indicate the formation of a protein monolayer at similar albumin
concentrations as those found in human blood. Additionally, by monitoring the frequency and
intensity of individual scattering events caused by single gold nanoparticles passing the
observation volume, we found that BSA did not induce colloidal aggregation, a relevant result
from the toxicological viewpoint. Moreover, to elucidate the thermodynamics of the gold
nanoparticle-BSA association, we measured an adsorption isotherm which was best described by
an anti-cooperative binding model. The number of binding sites based on this model was
consistent with a BSA monolayer in its native state. In contrast, experiments using poly-ethylene
glycol capped gold nanoparticles revealed no evidence for adsorption of BSA
- …
