1,020 research outputs found

    Clover disease : Practical Findings and Recommendation for Control

    Get PDF
    Practical Findings and Recommendation for Control During the past decade an infertility in ewes together with other breeding troubles and abnormalities of the sex organs of sheep became a serious problem in certain regions in Western Australia where pastures were composed predominantly of early (Dwalganup) subterranean clover

    Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex

    Get PDF
    Gamma oscillations have previously been linked to pain perception and it has been hypothesised that they may have a potential role in encoding pain intensity. Stimulus response experiments have reported an increase in activity in the primary somatosensory cortex (SI) with increasing stimulus intensity, but the specific role of oscillatory dynamics in this change in activation remains unclear. In this study, Magnetoencephalography (MEG) was used to investigate the changes in cortical oscillations during 4 different intensities of a train of electrical stimuli to the right index finger, ranging from low sensation to strong pain. In those participants showing changes in evoked oscillatory gamma in SI during stimulation, the strength of the gamma power was found to increase with increasing stimulus intensity at both pain and sub-pain thresholds. These results suggest that evoked gamma oscillations in SI are not specific to pain but may have a role in encoding somatosensory stimulus intensity. © 2013 Rossiter, Worthen, Witton, Hall and Furlong

    Temperature dependence of the resistance of metallic nanowires (diameter \geq 15 nm): Applicability of Bloch-Gr\"{u}neisen theorem

    Get PDF
    We have measured the resistances (and resistivities) of Ag and Cu nanowires of diameters ranging from 15nm to 200nm in the temperature range 4.2K-300K with the specific aim to assess the applicability of the Bloch-Gr\"{u}neisen formula for electron phonon resistivity in these nanowires. The wires were grown within polymeric templates by electrodeposition. We find that in all the samples the resistance reaches a residual value at T=4.2K and the temperature dependence of resistance can be fitted to the Bloch-Gr\"{u}neisen formula in the entire temperature range with a well defined transport Debye temperature (ΘR\Theta_{R}). The value of Debye temperature obtained from the fits lie within 8% of the bulk value for Ag wires of diameter 15nm while for Cu nanowires of the same diameter the Debye temperature is significantly lesser than the bulk value. The electron-phonon coupling constants (measured by αelph\alpha_{el-ph} or αR\alpha_{R}) in the nanowires were found to have the same value as that of the bulk. The resistivities of the wires were seen to increase as the wire diameter was decreased. This increase in the resistivity of the wires may be attributed to surface scattering of conduction electrons. The specularity p was estimated to be about 0.5. The observed results allow us to obtain the resistivities exactly from the resistance and gives us a method of obtaining the exact numbers of wires within the measured array (grown within the template).Comment: 9 pages, 10 figure

    Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins

    Get PDF
    Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide- bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an auto-transporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis

    A photometric and spectroscopic study of NSVS 14256825: the second sdOB+dM eclipsing binary

    Full text link
    We present an analysis of UBVRC_{\rm C}IC_{\rm C}JH photometry and phase-resolved optical spectroscopy of NSVS 14256825, an HW Vir type binary. The members of this class consist of a hot subdwarf and a main-sequence low-mass star in a close orbit (Porb 0.1P_{\rm orb} ~ 0.1 d). Using the primary-eclipse timings, we refine the ephemeris for the system, which has an orbital period of 0.11037 d. From the spectroscopic data analysis, we derive the effective temperature, T1=40000±500T_1 = 40000 \pm 500 K, the surface gravity, logg1=5.50±0.05\log g_1 = 5.50\pm0.05, and the helium abundance, n(He)/n(H)=0.003±0.001n(\rm He)/n(\rm H)=0.003\pm0.001, for the hot component. Simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code, we obtain the geometrical and physical parameters of NSVS 14256825. Using the fitted orbital inclination and mass ratio (i = 82\fdg5\pm0\fdg3 and q=M2/M1=0.260±0.012q = M_2/M_1 = 0.260\pm0.012, respectively), the components of the system have M1=0.419±0.070MM_1 = 0.419 \pm 0.070 M_{\odot}, R1=0.188±0.010RR_1 = 0.188 \pm 0.010 R_{\odot}, M2=0.109±0.023MM_2 = 0.109 \pm 0.023 M_{\odot}, and R2=0.162±0.008RR_2 = 0.162 \pm 0.008 R_{\odot}. From its spectral characteristics, the hot star is classified as an sdOB star.Comment: 8 pages, 7 figures, accepted for publication in MNRA

    Characteristics of Cavity-Stabilized Flames in a Supersonic Flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77050/1/AIAA-15095-553.pd

    Antigen Localization Influences the Magnitude and Kinetics of Endogenous Adaptive Immune Response to Recombinant Salmonella Vaccines

    Get PDF
    The use of recombinant attenuated Salmonella vaccine (RASV) strains is a promising strategy for presenting heterologous antigens to the mammalian immune system to induce both cellular and humoral immune responses. However, studies on RASV development differ on where heterologous antigens are expressed and localized within the bacterium, and it is unclear how antigen localization modulates the immune response. Previously, we exploited the plasmid-encoded toxin (Pet) autotransporter system for accumulation of heterologous antigens in cell culture supernatant. In the present study, this Pet system was used to express early secretory antigen 6 (ESAT-6), an immunodominant and diagnostic antigen from Mycobacterium tuberculosis, in Salmonella enterica serovar Typhimurium strain SL3261. Three strains were generated, whereby ESAT-6 was expressed as a cytoplasmic (SL3261/cyto), surface-bound (SL3261/surf), or secreted (SL3261/sec) antigen. Using these RASVs, the relationship between antigen localization and immunogenicity in infected C57BL/6 mice was systematically examined. Using purified antigen and specific tetramers, we showed that mice infected with the SL3261/surf or SL3261/sec strain generated large numbers of Th1 CD4+ ESAT-6+ splenic T cells compared to those of mice infected with SL3261/cyto. While all mice showed ESAT-6-specific antibody responses when infected with SL3261/surf or SL3261/sec, peak total serum IgG antibody titers were reached more rapidly in mice that received SL3261/sec. Thus, how antigen is localized after production within bacteria has a more marked effect on the antibody response than on the CD4+ T cell response, which might influence the chosen strategy to localize recombinant antigen in RASVs

    Direct flux and current vector control for induction motor drives using model predictive control theory

    Get PDF
    The study presents the direct flux and current vector control of an induction motor (IM) drive, which is a relatively newer and promising control strategy, through the use of model predictive control (MPC) techniques. The results highlight that the fast flux control nature of direct flux control strategy is further enhanced by MPC. Predictive control is applied in two of its variants, namely the finite control set and modulated MPC, and the advantages and limitations of the two are underlined. This work also highlights, through experimental results, the importance of prioritising the flux part of the cost function which is particularly significant in the case of an IM drive. The performance of the MPC-based approach is compared with the proportional-integral controller, which also prioritises the flux control loop, under various operating regions of the drive such as in the flux-weakening regime. Simulations show the performance expected with different control strategies which is then verified through experiments

    WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect

    Full text link
    We report the discovery of a new transiting planet in the Southern Hemisphere. It has been found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope and the ESO 3.6m telescope. The orbital period of the planet is 2.94 days. We find it is a gas giant with a mass of 0.88 \pm 0.10 Mj and a radius estimated at 0.96 \pm 0.05 Rj . We have also obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal to noise of the effect and of a small impact parameter we cannot place a constraint on the projected spin-orbit angle. We find two confiicting values for the stellar rotation. Our determination, via spectral line broadening gives v sin I = 2.2 \pm 0.3 km/s, while another method, based on the activity level using the index log R'HK, gives an equatorial rotation velocity of only v = 1.35 \pm 0.20 km/s. Using these as priors in our analysis, the planet could either be misaligned or aligned. This should send strong warnings regarding the use of such priors. There is no evidence for eccentricity nor of any radial velocity drift with time.Comment: 13 pages, 8 figures, 7 tables, accepted for publication in A&
    corecore