14 research outputs found

    The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005

    Get PDF
    Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a landbased balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294±545 Tg C in CO2-eq yr−1), inventories (1299±200 Tg C in CO2-eq yr−1) and inversions (1210±405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205±72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.JRC.H.2-Air and Climat

    Three decades of simulated global terrestrial carbon fluxes from a data assimilation system confronted with different periods of observations

    Get PDF
    During the last decade, carbon cycle data assimilation systems (CCDAS) have focused on improving the simulation of seasonal and mean global carbon fluxes over a few years by simultaneous assimilation of multiple data streams. However, the ability of a CCDAS to predict longer-term trends and variability of the global carbon cycle and the constraint provided by the observations have not yet been assessed. Here, we evaluate two near-decade-long assimilation experiments of the Max Planck Institute-Carbon Cycle Data Assimilation System (MPI-CCDAS v1) using spaceborne estimates of the fraction of absorbed photosynthetic active radiation (FAPAR) and atmospheric CO2 concentrations from the global network of flask measurement sites from either 1982 to 1990 or 1990 to 2000. We contrast these simulations with independent observations from the period 1982-2010, as well as a third MPI-CCDAS assimilation run using data from the full 1982-2010 period, and an atmospheric inversion covering the same data and time. With 30 years of data, MPI-CCDAS is capable of representing land uptake to a sufficient degree to make it compatible with the atmospheric CO2 record. The long-term trend and seasonal amplitude of atmospheric CO2 concentrations at station level over the period 1982 to 2010 is considerably improved after assimilating only the first decade (1982-1990) of observations. After 15-19 years of prognostic simulation, the simulated CO2 mixing ratio in 2007-2010 diverges by only 2 +/- 1.3 ppm from the observations, the atmospheric inversion, and the MPI-CCDAS assimilation run using observations from the full period. The long-term trend, phenological seasonality, and interannual variability (IAV) of FAPAR in the Northern Hemisphere over the last 1 to 2 decades after the assimilation were also improved. Despite imperfections in the representation of the IAV in atmospheric CO2, model-data fusion for a decade of data can already contribute to the prognostic capacity of land carbon cycle models at relevant timescales.Peer reviewe

    Recent Warming Has Resulted in Smaller Gains in Net Carbon Uptake in Northern High Latitudes

    Get PDF
    International audienceCarbon balance of terrestrial ecosystems in the northern high latitudes (NHL) is sensitive to climate change. It remains uncertain whether current regional carbon uptake capacity can be sustained under future warming. Here the atmospheric CO2 drawdown rate (CDR) between 1974 and 2014, defined as the CO2 decrease in ppm over the number of days in spring or summer, is estimated using atmospheric CO2 observations at Barrow (now known as Utqiaġvik), Alaska. We found that the sensitivity of CDR to interannual seasonal air temperature anomalies has trended toward less carbon uptake for a given amount of warming over this period. Changes in interannual temperature sensitivity of CDR suggest that relatively warm springs now result in less of a carbon uptake enhancement. Similarly, relatively warm summers now result in greater carbon release. These results generally agree with the sensitivity of net carbon exchange (NCE) estimated by atmospheric CO2 inversion. When NCE was aggregated over North America (NA) and Eurasia (EA), separately, the temperature sensitivity of NCE in NA has changed more than in EA. To explore potential mechanisms of this signal, we also examine trends in interannual variability of other climate variables (soil temperature and precipitation), satellite-derived gross primary production (GPP), and Trends in Net Land–Atmosphere Carbon Exchanges (TRENDY) model ensemble results. Our analysis suggests that the weakened spring sensitivity of CDR may be related to the slowdown in seasonal soil thawing rate, while the summer sensitivity change may be caused by the temporally coincident decrease in temperature sensitivity of photosynthesis. This study suggests that the current NHL carbon sink may become unsustainable as temperatures warm further. We also found that current carbon cycle models do not represent the decrease in temperature sensitivity of net carbon flux. We argue that current carbon–climate models misrepresent important aspect of the carbon–climate feedback and bias the estimation of warming influence on NHL carbon balanc
    corecore