143 research outputs found

    Improved Preservation of Residual Beta Cell Function by Atorvastatin in Patients with Recent Onset Type 1 Diabetes and High CRP Levels (DIATOR Trial)

    Get PDF
    A recent randomized placebo-controlled trial of the effect of atorvastatin treatment on the progression of newly diagnosed type 1 diabetes suggested a slower decline of residual beta cell function with statin treatment. Aim of this secondary analysis was to identify patient subgroups which differ in the decline of beta cell function during treatment with atorvastatin.The randomized placebo-controlled Diabetes and Atorvastatin (DIATOR) Trial included 89 patients with newly diagnosed type 1 diabetes and detectable islet autoantibodies (mean age 30 years, 40% females), in 12 centers in Germany. Patients received placebo or 80 mg/d atorvastatin for 18 months. As primary outcome stimulated serum C-peptide levels were determined 90 min after a standardized liquid mixed meal. For this secondary analysis patients were stratified by single baseline characteristics which were considered to possibly be modified by atorvastatin treatment. Subgroups defined by age, sex or by baseline metabolic parameters like body mass index (BMI), total serum cholesterol or fasting C-peptide did not differ in C-peptide outcome after atorvastatin treatment. However, the subgroup defined by high (above median) baseline C-reactive protein (CRP) concentrations exhibited higher stimulated C-peptide secretion after statin treatment (p = 0.044). Individual baseline CRP levels correlated with C-peptide outcome in the statin group (r(2) = 0.3079, p<0.004). The subgroup with baseline CRP concentrations above median differed from the corresponding subgroup with lower CRP levels by higher median values of BMI, IL-6, IL-1RA, sICAM-1 and E-selectin.Atorvastatin treatment may be effective in slowing the decline of beta cell function in a patient subgroup defined by above median levels of CRP and other inflammation associated immune mediators.ClinicalTrials.gov NCT00974740

    FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, J. A., Curry, E. G., Blue, R. E., Roden, C., Dundon, S. E. R., Rodríguez-Vargas, A., Jordan, D. C., Chen, X., Lyons, S. M., Crutchley, J., Anderson, P., Horb, M. E., Gladfelter, A. S., & Giudice, J. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. Journal of Cell Biology, 219(4), (2020): e201911129, doi: 10.1083/jcb.201911129.Fragile-X mental retardation autosomal homologue-1 (FXR1) is a muscle-enriched RNA-binding protein. FXR1 depletion is perinatally lethal in mice, Xenopus, and zebrafish; however, the mechanisms driving these phenotypes remain unclear. The FXR1 gene undergoes alternative splicing, producing multiple protein isoforms and mis-splicing has been implicated in disease. Furthermore, mutations that cause frameshifts in muscle-specific isoforms result in congenital multi-minicore myopathy. We observed that FXR1 alternative splicing is pronounced in the serine- and arginine-rich intrinsically disordered domain; these domains are known to promote biomolecular condensation. Here, we show that tissue-specific splicing of fxr1 is required for Xenopus development and alters the disordered domain of FXR1. FXR1 isoforms vary in the formation of RNA-dependent biomolecular condensates in cells and in vitro. This work shows that regulation of tissue-specific splicing can influence FXR1 condensates in muscle development and how mis-splicing promotes disease.We thank the A.S. Gladfelter and J. Giudice laboratories, Nancy Kedersha, and Silvia Ramos for critical discussions; Eunice Y. Lee for technical help; Dr. Stephanie Gupton (University of North Carolina at Chapel Hill, Chapel Hill, NC) for donation of WT C57BL/6J mouse embryos; and Marcin Wlizla and National Xenopus Resource (RRID:SCR_013731) for their help in maintaining adult frogs and other important technical support. This work has been funded by a University of North Carolina at Chapel Hill Junior Faculty Development Award (to J. Giudice); a Nutrition and Obesity Research Center, University of North Carolina at Chapel Hill, Pilot & Feasibility Research grant (P30DK056350 to J. Giudice); University of North Carolina at Chapel Hill startup funds (to J. Giudice); the March of Dimes Foundation (5-FY18-36, Basil O’Connor Starter Scholar Award to J. Giudice); and NCTraCs Pilot Grant (550KR181805) from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, through Grant Award Number UL1TR002489 (to J. Giudice), National Institutes of Health National Institute of General Medical Sciences grants (R01-GM130866 to J. Giudice, R01-GM081506 to A.S. Gladfelter, R35-GM126901 to P. Anderson, K99-GM124458 to S.M. Lyons, R25-GM089569 and 2R25-GM055336-20 to E.G. Curry); Howard Hughes Medical Institute Faculty Scholars program (A.S. Gladfelter), and National Institute of Health grants R01-HD084409 and P40-OD010997 (to M.E. Horb). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.2020-09-1

    4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue.

    Get PDF
    Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    TXNIP Regulates Peripheral Glucose Metabolism in Humans

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS: We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM
    corecore