228 research outputs found

    Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    Get PDF
    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated

    Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torsion mode cascade

    Get PDF
    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated

    Probing the Circumnuclear Stellar Populations of Starburst Galaxies in the Near-infrared

    Full text link
    We employ the NASA Infrared Telescope Facility's near-infrared spectrograph SpeX at 0.8-2.4μ\mum to investigate the spatial distribution of the stellar populations (SPs) in four well known Starburst galaxies: NGC34, NGC1614, NGC3310 and NGC7714. We use the STARLIGHT code updated with the synthetic simple stellar populations models computed by Maraston (2005, M05). Our main results are that the NIR light in the nuclear surroundings of the galaxies is dominated by young/intermediate age SPs (t≤2×109t \leq 2\times10^9yr), summing from ∼\sim40\% up to 100\% of the light contribution. In the nuclear aperture of two sources (NGC1614 and NGC3310) we detected a predominant old SP component (t>2×109t > 2\times10^9yr), while for NGC34 and NGC7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC1614, NGC3310 and NGC7714 can explain the lower metallicity values derived for the young SP component of these sources. In this scenario the fresh unprocessed metal poorer gas from the destroyed/interacting companion galaxy is driven to the centre of the galaxies and mixed with the central region gas, before star formation takes place. In order to deepen our analysis, we performed the same procedure of SP synthesis using Maraston (2011, M11) EPS models. Our results show that the newer and higher resolution M11 models tend to enhance the old/intermediate age SP contribution over the younger ages

    The first detection of near-infrared CN bands in active galactic nuclei: signature of star formation

    Get PDF
    We present the first detection of the near-infrared CN absorption band in the nuclear spectra of active galactic nuclei (AGN). This feature is a recent star formation tracer, being particularly strong in carbon stars. The equivalent width of the CN line correlates with that of the CO at 2.3 microns, as expected in stellar populations (SP) with ages between ~ 0.2 and ~ 2 Gyr. The presence of the 1.1 microns CN band in the spectra of the sources is taken as an unambiguous evidence of the presence of young/intermediate SP close to the central source of the AGN. Near-infrared bands can be powerful age indicators for star formation connected to AGN, the understanding of which is crucial in the context of galaxy formation and AGN feedback.Comment: Accepted for publication in The Astrophysical Journal Letters. 4 pages, 3 figure

    PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    Full text link
    We present Perl Algorithm to Compute continuum and Equivalent Widths (pacce). We describe the methods used in the computations and the requirements for its usage. We compare the measurements made with pacce and "manual" ones made using iraf splot task. These tests show that for SSP models the equivalent widths strengths are very similar (differences <0.2A) for both measurements. In real stellar spectra, the correlation between both values is still very good, but with differences of up to 0.5A. pacce is also able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies. In addition, it is also able to compute the uncertainties in the equivalent widths using photon statistics. The code is made available for the community through the web at http://www.if.ufrgs.br/~riffel/software.html.Comment: 8 pages, 5 figures, accepted by Astrophysics and Space Scienc

    The stellar spectral features of nearby galaxies in the near infrared: tracers of thermally pulsing asymptotic giant branch stars?

    Get PDF
    et al.We analyse the stellar absorption features in high signal-to-noise ratio (S/N) near-infrared (NIR) spectra of the nuclear region of 12 nearby galaxies, mostly spirals. The features detected in some or all of the galaxies in this sample are the TiO (0.843 and 0.886 μm), VO (1.048 μm), CN (1.1 and 1.4 μm), H2O (1.4 and 1.9 μm) and CO (1.6 and 2.3 μm) bands. The C2 (1.17 and 1.76 μm) bands are generally weak or absent, although C2 (1.76 μm) may be weakly present in the mean galaxy spectrum. A deep feature near 0.93 μm, likely caused by CN, TiO and/or ZrO, is also detected in all objects. Fitting a combination of stellar spectra to the mean spectrum shows that the absorption features are produced by evolved stars: cool giants and supergiant stars in the early- or thermally pulsing asymptotic giant branch (E-AGB or TP-AGB) phases. The high luminosity of TP-AGB stars, and the appearance of VO and ZrO features in the data, suggest that TP-AGB stars dominate these spectral features. However, a contribution from other evolved stars is also likely. Comparison with evolutionary population synthesis models shows that models based on empirical libraries that predict relatively strong NIR features provide a more accurate description of the data. However, none of the models tested accurately reproduces all of the features observed in the spectra. To do so, the models will need to not only improve the treatment of TP-AGB stars, but also include good quality spectra of red giant and E-AGB stars. The uninterrupted wavelength coverage, high S/N and quantity of features we present here will provide a benchmark for the next generation of models aiming to explain and predict the NIR properties of galaxies.The Brazilian authors thank CNPq and FAPERGS support. LCH acknowledges support by the Chinese Academy of Science through grant no. XDB09030102 (Emergence of Cosmological Structures) from the Strategic Priority Research Program and by the National Natural Science Foundation of China through grant No. 11473002. CRA is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934).Peer Reviewe

    SSDSS IV MaNGA - Properties of AGN host galaxies

    Full text link
    We present here the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of about 2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. For a given morphology AGN hosts are, in average, more massive, more compact, more central peaked and rather pressurethan rotational-supported systems. We confirm previous results indicating that AGN hosts are located in the intermediate/transition region between star-forming and non-star-forming galaxies (i.e., the so-called green valley), both in the ColorMagnitude and the star formation main sequence diagrams. Taking into account their relative distribution in terms of the stellar metallicity and oxygen gas abundance and a rough estimation of their molecular gas content, we consider that these galaxies are in the process of halting/quenching the star formation, in an actual transition between both groups. The analysis of the radial distributions of the starformation rate, specific star-formation rate, and molecular gas density shows that the quenching happens from inside-out involving both a decrease of the efficiency of the star formation and a deficit of molecular gas. All the intermediate data-products used to derive the results of our analysis are distributed in a database including the spatial distribution and average properties of the stellar populations and ionized gas, published as a Sloan Digital Sky Survey Value Added Catalog being part of the 14th Data Release: http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/Comment: 48 pages, 14 figures, in press in RMxA

    Panchromatic Averaged Stellar Populations: PaasP

    Full text link
    We study how the spectral fitting of galaxies, in terms of light fractions derived in one spectral region translates into another region, by using results from evolutionary synthesis models. In particular, we examine propagation dependencies on Evolutionary Population Synthesis (EPS, {\sc grasil}, {\sc galev}, Maraston and {\sc galaxev}) models, age, metallicity, and stellar evolution tracks over the near-UV---near infrared (NUV---NIR, 3500\AA\ to 2.5\mc) spectral region. Our main results are: as expected, young (t≲t \lesssim 400 Myr) stellar population fractions derived in the optical cannot be directly compared to those derived in the NIR, and vice versa. In contrast, intermediate to old age (t≳t \gtrsim 500 Myr) fractions are similar over the whole spectral region studied. The metallicity has a negligible effect on the propagation of the stellar population fractions derived from NUV --- NIR. The same applies to the different EPS models, but restricted to the range between 3800 \AA\ and 9000 \AA. However, a discrepancy between {\sc galev}/Maraston and {\sc grasil}/{\sc galaxev} models occurs in the NIR. Also, the initial mass function (IMF) is not important for the synthesis propagation. Compared to {\sc starlight} synthesis results, our propagation predictions agree at ∼\sim95% confidence level in the optical, and ∼\sim85% in the NIR. {\bf In summary, spectral fitting} performed in a restricted spectral range should not be directly propagated from the NIR to the UV/Optical, or vice versa. We provide equations and an on-line form ({\bf Pa}nchromatic {\bf A}veraged {\bf S}tellar {\bf P}opulation - \paasp) to be used for this purpose.Comment: 13 pages and 10 figures. Accepted by MNRA

    Differences between CO- and calcium triplet-derived velocity dispersions in spiral galaxies: evidence for central star formation?

    Get PDF
    et al.We examine the stellar velocity dispersions (σ) of a sample of 48 galaxies, 35 of which are spirals, from the Palomar nearby galaxy survey. It is known that for ultra-luminous infrared galaxies (ULIRGs) and merger remnants, the σ derived from the near-infrared CO band heads is smaller than that measured from optical lines, while no discrepancy between these measurements is found for early-type galaxies. No such studies are available for spiral galaxies – the subject of this paper. We used cross-dispersed spectroscopic data obtained with the Gemini Near-Infrared Spectrograph, with spectral coverage from 0.85 to 2.5 μm, to obtain σ measurements from the 2.29 μm CO band heads (σCO) and the 0.85 μm calcium triplet (σCaT). For the spiral galaxies in the sample, we found that σCO is smaller than σCaT, with a mean fractional difference of 14.3 per cent. The best fit to the data is given by σopt = (46.0 ± 18.1) + (0.85 ± 0.12)σCO. This ‘σ-discrepancy’ may be related to the presence of warm dust, as suggested by a slight correlation between the discrepancy and the infrared luminosity. This is consistent with studies that have found no σ-discrepancy in dust-poor early-type galaxies, and a much larger discrepancy in dusty merger remnants and ULIRGs. That σCO is lower than σopt may also indicate the presence of a dynamically cold stellar population component. This would agree with the spatial correspondence between low-σCO and young/intermediate-age stellar populations that has been observed in spatially resolved spectroscopy of a handful of galaxies.RAR acknowledges support from FAPERGS (project no. 12/1209-6) and CNPq (project no. 470090/2013-8). LCH acknowledges support from the Kavli Foundation, Peking University, and grant no. XDB09030102 (Emergence of Cosmological Structures) from the Strategic Priority Research Program of the Chinese Academy of Sciences. ARA acknowledges CNPq for partial support to this work through grant 307403/2012-2. LM thanks CNPq through grant 305291/2012-2. LC acknowledges support from the Special Visiting Researcher Fellowship (PVE 313945/2013-6) under the Brazilian Scientific Mobility Program ‘Ciencias sem Fronteiras’. RR acknowledges funding from FAPERGs (ARD 11/1758-5) and CNPq (PeP 304796/2011-5). CRA is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-327934) and by the Spanish Ministry of Science and Innovation (MICINN) through project PN AYA2010-21887-C04.04.Peer Reviewe

    Zooming into local active galactic nuclei: The power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Get PDF
    Ionised gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range L_bol ~ 10^43-45 erg/s there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph Integral Field Unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower L_bol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher L_bol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small scale IFU maps.Comment: 14 pages, accepted for publication in MNRA
    • …
    corecore