59 research outputs found
Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays
Bose-Einstein Correlations (BEC) of three identical charged pions were
studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP.
The genuine three-pion correlations, corrected for the Coulomb effect, were
separated from the known two-pion correlations by a new subtraction procedure.
A significant genuine three-pion BEC enhancement near threshold was observed
having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029
(syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041
(syst.). The Coulomb correction was found to increase the \lambda_3 value by
\~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of
0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the
three-pion sample purity. A relation between the two-pion and the three-pion
source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.
Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Mitochondria damage plays a critical role in acetaminophen (APAP)-induced necrosis and liver injury. Cells can adapt and protect themselves by removing damaged mitochondria via mitophagy. PINK1-Parkin pathway is one of the major pathways that regulate mitophagy but its role in APAP-induced liver injury is still elusive. We investigated the role of PINK1-Parkin pathway in hepatocyte mitophagy in APAP-induced liver injury in mice. Wild-type (WT), PINK1 knockout (KO), Parkin KO, and PINK1 and Parkin double KO (DKO) mice were treated with APAP for different time points. Liver injury was determined by measuring serum alanine aminotransferase (ALT) activity, H&E staining as well as TUNEL staining of liver tissues. Tandem fluorescent-tagged inner mitochondrial membrane protein Cox8 (Cox8-GFP-mCherry) can be used to monitor mitophagy based on different pH stability of GFP and mCherry fluorescent proteins. We overexpressed Cox8-GFP-mCherry in mouse livers via tail vein injection of an adenovirus Cox8-GFP-mCherry. Mitophagy was assessed by confocal microscopy for Cox8-GFP-mCherry puncta, electron microscopy (EM) analysis for mitophagosomes and western blot analysis for mitochondrial proteins. Parkin KO and PINK1 KO mice improved the survival after treatment with APAP although the serum levels of ALT were not significantly different among PINK1 KO, Parkin KO and WT mice. We only found mild defects of mitophagy in PINK1 KO or Parkin KO mice after APAP, and improved survival in PINK1 KO and Parkin KO mice could be due to other functions of PINK1 and Parkin independent of mitophagy. In contrast, APAP-induced mitophagy was significantly impaired in PINK1-Parkin DKO mice. PINK1-Parkin DKO mice had further elevated serum levels of ALT and increased mortality after APAP administration. In conclusion, our results demonstrated that PINK1-Parkin signaling pathway plays a critical role in APAP-induced mitophagy and liver injury.NIH R01 AA 020518NIH R01 DK 102142NIH U01 AA 024733NIH P20 GM 103549NIH P30 GM 118247NIH COBRE grant 9P20GM104936NIH S10RR02756
Measurement of the Production Rate of Charm Quark Pairs from Gluons in Hadronic Decays
The rate of secondary charm-quark-pair production has been measured in 4.4 million hadronic Z0 decays collected by OPAL. By selecting events with three jets and tagging charmed hadrons in the gluon jet candidate using leptons and charged D* mesons, the average number of secondary charm-quark pairs per hadronic event is found to be (3.20+-0.21+-0.38)x10-2
Celebrating 50-years:the history and future of the International Society of Bone Morphometry
The International Society of Bone Morphometry (ISBM) is dedicated to advancing research, education, and clinical practice for osteoporosis and other bone disorders by developing and improving tools for the quantitative imaging and analysis of bone. Its initial core mission was to promote the proper use of morphometric techniques in bone research and to educate and train clinicians and basic scientists in bone morphometry. This article chronicles the evolution of the ISBM and the history and development of bone morphometric techniques for the past 50-years, starting with workshops on bone morphometry in 1973, to the formal incorporation of the ISBM in 1996, to today. We also provide a framework and vision for the coming decades. This effort was led by ISBM presidents Dr Erica L. Scheller (2022-2024) and Dr Thomas J. Wronski (2009-2012) in collaboration with all other living ISBM presidents. Though the underlying techniques and questions have changed over time, the need for standardization of established tools and discovery of novel approaches for bone morphometry remains a constant. The ISBM fulfills this need by providing a forum for the exchange of ideas, with a philosophy that encourages the open discussion of pitfalls and challenges among clinicians, scientists, and industry partners. This facilitates the rapid development and adaptation of tools to meet emerging demands within the field of bone health at a high level.</p
The Report of the 2012-2013 Research and Graduate Affairs Committee
The RGA Committee met on October 29-30, 2012, in Crystal City, VA. The Committee corresponded via e-mail throughout the year, and had a conference call on June 13, 2013. The charge for the RGA Committee was to develop strategies on how to get our members to the right tables and at the right time for advancing pharmacy research and graduate education
Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
: Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants
Genetic Risk Score for Intracranial Aneurysms:Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity
BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10(-3) per year [95% CI, -6.49×10(-3) to -3.14×10(-3)]; P=1.82×10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
- …
