20 research outputs found

    Regional and cellular gene expression changes in human Huntington's disease brain

    Get PDF
    Huntington's disease (HD) pathology is well understood at a histological level but a comprehensive molecular analysis of the effect of the disease in the human brain has not previously been available. To elucidate the molecular phenotype of HD on a genome-wide scale, we compared mRNA profiles from 44 human HD brains with those from 36 unaffected controls using microarray analysis. Four brain regions were analyzed: caudate nucleus, cerebellum, prefrontal association cortex [Brodmann's area 9 (BA9)] and motor cortex [Brodmann's area 4 (BA4)]. The greatest number and magnitude of differentially expressed mRNAs were detected in the caudate nucleus, followed by motor cortex, then cerebellum. Thus, the molecular phenotype of HD generally parallels established neuropathology. Surprisingly, no mRNA changes were detected in prefrontal association cortex, thereby revealing subtleties of pathology not previously disclosed by histological methods. To establish that the observed changes were not simply the result of cell loss, we examined mRNA levels in laser-capture microdissected neurons from Grade 1 HD caudate compared to control. These analyses confirmed changes in expression seen in tissue homogenates; we thus conclude that mRNA changes are not attributable to cell loss alone. These data from bona fide HD brains comprise an important reference for hypotheses related to HD and other neurodegenerative disease

    Stroke awareness and knowledge in an Urban New Zealand population

    Get PDF
    © 2015 National Stroke Association. Background Stroke is the third most common cause of death and a major cause of chronic disability in New Zealand. Linked to risk factors that develop across the life-course, stroke is considered to be largely preventable. This study assessed the awareness of stroke risk, symptoMS detection, and prevention behaviors in an urban New Zealand population. Methods Demographics, stroke risk factors awareness, symptoMS responsiveness, and prevention behaviors were evaluated using a structured oral questionnaire. Binomial logistic regression analyses were used to identify predictors of stroke literacy. Results Although personal experience of stroke increased awareness of symptoms and their likeliness to indicate the need for urgent medical attention, only 42.7% of the respondents (n = 850) identified stroke as involving both blood and the brain. Educational attainment at or above a trade certificate, apprenticeship, or diploma increased the awareness of stroke symptoms compared with those with no formal educational attainment. Pacific Island respondents were less likely than New Zealand Europeans to identify a number of stroke risk factors. Ma¯ori, Pacific Island, and Asian respondents were less likely to identify symptoms of stroke and indicate the need for urgent medical attention. Conclusions The variability in stroke awareness and knowledge may suggest the need to enhance stroke-related health literacy that facilitates understanding of risk and of factors that reduce morbidity and mortality after stroke in people of Ma¯ori and Pacific Island descent and in those with lower educational attainment or socioeconomic status. It is therefore important that stroke awareness campaigns include tailored components for target audiences

    Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage

    Get PDF
    To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trial

    A panel of TDP-43-regulated splicing events verifies loss of TDP-43 function in amyotrophic lateral sclerosis brain tissue

    No full text
    TDP-43 dysfunction is a molecular hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A major hypothesis of TDP-43 dysfunction in disease is the loss of normal nuclear function, resulting in impaired RNA regulation and the emergence of cryptic exons. Cryptic exons and differential exon usage are emerging as promising markers of lost TDP-43 function in addition to revealing biological pathways involved in neurodegeneration in ALS/FTD. In this brief report, we identified markers of TDP-43 loss of function by depleting TARDBP from post-mortem human brain pericytes, a manipulable in vitro primary human brain cell model, and identifying differential exon usage events with bulk RNA-sequencing analysis. We present these data in an interactive database (https://www.scotterlab.auckland.ac.nz/research-themes/tdp43-lof-db-v2/) together with seven other TDP-43-depletion datasets we meta-analysed previously, for user analysis of differential expression and splicing signatures. Differential exon usage events that were validated by qPCR were then compiled into a ‘differential exon usage panel’ with other well-established TDP-43 loss-of-function exon markers. This differential exon usage panel was investigated in ALS and control motor cortex tissue to verify whether, and to what extent, TDP-43 loss of function occurs in ALS. We find that profiles of TDP-43-regulated cryptic exons, changed exon usage and changed 3′ UTR usage discriminate ALS brain tissue from controls, verifying that TDP-43 loss of function occurs in ALS. We propose that TDP-43-regulated splicing events that occur in brain tissue will have promise as predictors of disease

    Insoluble TATA-binding protein accumulation in Huntington's disease cortex

    No full text
    Huntington's disease is a dominantly inherited neurological disorder where specific neurodegeneration is caused by an extended polyglutamine stretch in the huntingtin protein. Proteins with expanded polyglutamine regions have the ability to self-aggregate and previous work in our laboratory, and by others, revealed sparse amyloid-like deposits in the Huntington's disease brain, supporting the hypothesis that the polyglutamine stretches may fold into regular P-sheet structures. This process of folding has similarities to other neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and the prion diseases which all exhibit P-sheet protein accumulation. We were therefore interested in testing the hypothesis that TATA-binding protein may play a role in Huntington's disease as it contains an elongated polymorphic polyglutamine stretch that ranges in size from 26 to 42 amino acids in normal individuals. A proportion of TBP alleles fall within the range of glutamine length that causes neurodegeneration when located in the huntingtin protein. In this study the distribution and cellular localisation of TATA-binding protein was compared to the distribution and cellular localisation of the huntingtin protein in the middle frontal gyrus of Huntington's disease and neurologically normal subjects. Seven different morphological forms of TATA-binding protein-positive structures were detected in Huntington's disease but not in control brain. TATA-binding protein labelling was relatively more abundant than huntingtin labelling and increased with the grade of the disease. At least a proportion of this accumulated TBP exists as insoluble protein. This suggests that TBP may play a role in the disease process

    Mapping the calcitonin receptor in human brain stem

    No full text
    The calcitonin receptor (CTR) is relevant to three hormonal systems: amylin, calcitonin, and calcitonin gene-related peptide (CGRP). Receptors for amylin and calcitonin are targets for treating obesity, diabetes, and bone disorders. CGRP receptors represent a target for pain and migraine. Amylin receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract, the hypoglossal nucleus, the cuneate nucleus, spinal trigeminal nucleus, the gracile nucleus, and the inferior olivary nucleus. CTR staining was also observed in the area postrema, the lateral reticular nucleus, and the pyramidal tract. The extensive expression of CTR in the medulla suggests that CTR may be involved in a wider range of functions than currently appreciated

    TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is characterised by extra cellular beta-amyloid (betaA) deposition, Tau-containing neurofibrillary tangles (NFTs) and progressive cortical atrophy. Abnormal protein accumulation is also a common feature of other late onset neurodegenerative diseases, including the heritable polyglutamine (polyQ) disorders such as Huntington disease (HD) and the spinocerebellar ataxias (SCAs). One of this family of disorders, SCA17, is caused by an expansion of a polymorphic polyQ repeat in TATA binding protein (TBP), an essential transcription factor. Surprisingly, the wild type TBP repeat length ranges from 25 to 42, and in Caucasian populations the most common allele is 38, a size large enough to cause HD if within the huntingtin protein. Wild type length TBP accumulates in HD and in at least some of the SCAs, and consequently we hypothesised that it may contribute to AD. Here we provide evidence that TBP accumulates in AD brain, localising to neurofibrillary tangle structures. A proportion of TBP present in AD brain is insoluble; a signature of the polyQ diseases. TBP is present differentially between patients and its amount and distribution is not directly proportional to that of Tau or beta-amyloid positive structures. We present this as evidence for the hypothesis that the accumulation or misfolding of this polyQ containing protein may be a contributing factor in Alzheimer's disease

    Molecular investigation of TBP allele length:

    No full text
    Recently, an inherited spinocerebellar ataxia (SCA17) has been attributed to polyglutamine coding expansions within the gene coding for human TATA-box binding protein (TBP). The normal repeat range is 25-42 units with patients having as few as 46 repeats. We undertook a TBP repeat length population study showing its relative stability, skewed distribution, and substantial population specific differences. To investigate the mechanism of neurodegeneration in SCA17 we have developed a cellular model expressing full-length TBP with a range of polyQ expansions. As has been found with other polyQ cellular models, insoluble intracellular inclusions form in a repeat-length-dependent manner. In addition, we have shown that the expanded TBP polyQ tract is able to interact with other overexpressed polyQ-containing proteins. Importantly, overexpression of expanded TBP results in increased Cre-dependent transcriptional activity. As TBP is required for transcription by all RNA polymerases, this may indicate a mechanism for aberrant polyQ gain of function

    Applying the Bradford Hill criteria for causation to repetitive head impacts and chronic traumatic encephalopathy

    No full text
    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become “punch drunk.” However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the purported causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts
    corecore