4,346 research outputs found
Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)
The escape trajectories animals take following a predatory attack appear to
show high degrees of apparent 'randomness' - a property that has been described
as 'protean behaviour'. Here we present a method of quantifying the escape
trajectories of individual animals using a path complexity approach. When fish
(Pseudomugil signifer) were attacked either on their own or in groups, we find
that an individual's path rapidly increases in entropy (our measure of
complexity) following the attack. For individuals on their own, this entropy
remains elevated (indicating a more random path) for a sustained period (10
seconds) after the attack, whilst it falls more quickly for individuals in
groups. The entropy of the path is context dependent. When attacks towards
single fish come from greater distances, a fish's path shows less complexity
compared to attacks that come from short range. This context dependency effect
did not exist, however, when individuals were in groups. Nor did the path
complexity of individuals in groups depend on a fish's local density of
neighbours. We separate out the components of speed and direction changes to
determine which of these components contributes to the overall increase in path
complexity following an attack. We found that both speed and direction measures
contribute similarly to an individual's path's complexity in absolute terms.
Our work highlights the adaptive behavioural tactics that animals use to avoid
predators and also provides a novel method for quantifying the escape
trajectories of animals.Comment: 9 page
Insights from Snowboard Pedagogy for the Legal Studies Instructor
This paper intends to inform and avail instructors of pedagogical approaches proven effective in winter sports environments, specifically in the sport of snowboarding, that we suggest may be particularly effective in teaching business law to non-law students in undergraduate business programs. We join other scholars in examining the approach to teaching business law to non-law students in an effort to develop the knowledge and skills necessary to manage the “dynamic and untidy” legal issues that business professionals deal with, while mitigating the difficult and confusing subject matter and pedagogy associated with business law courses. Broadly speaking, teaching requires the acquisition of skills and knowledge; teaching law, the practice of law, and snowboarding are no different.
Undergraduate business law courses are an essential accompaniment to the suite of curricula associated with various majors within business schools, such as management, accounting, economics and supply chain. It is particularly important for business school students to develop and retain skills and knowledge associated with legal studies for several reasons. Students’ exposure to legal studies concepts is typically limited, yet the topics are critical for developing the conceptual skill to understand and work within the broader business environment. A basic understanding of business law can help managers make sound business decisions, and in the wake of corporate scandals over the last twenty years, an awareness of the legal environment of business is ever more urgent. One important way that business law courses develop students’ knowledge and conceptual skills is through the critical thinking required to identify legal issues in cases presented and to apply abstract legal concepts to the management of those legal issues. This is often a difficult challenge for students; mastery requires high-impact learning experiences and significant applied practice. The same can be said of snowboarding knowledge and skills. A snowboard instructor can talk about snowboarding with a new athlete, but the athlete can only learn how to snowboard by the significant applied practice of snowboarding.
Business law instruction is similar to snowboarding instruction in a number of other, more specific ways. In both domains, it is critical that students receive frequent instruction on how to perform relevant skills and feedback on performance to improve at their craft. The learning curve is steep for both business law and snowboarding students – concepts are often not intuitive, they can be overwhelming, and it can be a frustrating and painful process. A common reason that snow sports enthusiasts give for avoiding snowboarding is the steep and often physically painful learning curve that must be endured.
In undergraduate business law courses, students are given background for the cases they study, yet spillover from law school pedagogy often means that business law instructors are hesitant to engage in high-touch practices that lead to internalized learning. Snowboard pedagogy provides several key insights into learning involving a shift from transmitting knowledge to facilitating active learning. We believe these insights have the potential to enhance dramatically student learning of business law concepts.
In this paper, we explore snow-sport pedagogy, snowboarding in particular, to gather specific insights into how to improve business law instruction in business schools. We first present a brief background describing the dominant paradigm in business law education, drawing from select scholarly literature on legal studies education in business, and then introduce sport and snow-sport pedagogy, including connections to legal studies pedagogy. We then turn specifically to snowboarding pedagogy, discussing how the development of the field generated specific pedagogical approaches in response to the nature of snowboarding as a sport. In particular, snowboard instructors have proven to be innovative and encouraged to disrupt pedagogical boundaries. Here, we offer specific core insights from snowboard pedagogy and how they may be applied to business law instruction
Geomorphic Constraints on Listric Thrust Faulting: Implications for Active Deformation in the Mackenzie Basin, South Island, New Zealand
Deformed fluvial terraces preserved over active thrust-related folds record the kinematics of folding as fault slip accumulates on the underlying thrust. In the Mackenzie Basin of southern New Zealand, the kinematics revealed by folded fluvial terraces along the active Ostler and Irishman Creek fault zones are inconsistent with traditional models for thrust-related folding in which spatially uniform rock uplift typically occurs over planar fault ramps. Instead, warped and tilted terraces in the Mackenzie are characterized by broad, continuous backlimbs and abrupt forelimbs and suggest folding through progressive limb rotation. By relating this pattern of surface deformation to the underlying thrust with a newly developed, simple geometric and kinematic model, we interpret both faults as listric thrusts rooted at depth into gently dipping planar fault ramps. Constraints on the model from detailed topographic surveying of deformed terraces, ground-penetrating radar over active fault scarps, and luminescence dating of terrace surfaces suggest slip rates for the Ostler and Irishman Creek faults of ~1.1– 1.7 mm/yr and~0.5–0.7 mm/yr, respectively. The predicted depth of listric faulting for the Ostler fault (0.70 +0.1-0.2 km) and the Irishman Creek fault (1.3+0.1-0.5 km) generally agrees with geophysical estimates of basin depth in the Mackenzie and suggests control of preexisting basin architecture on the geometry of active thrusting. Despite the potential effects of changes in fault curvature and hanging wall internal deformation, the methodology presented here provides a simple tool for approximating the kinematics of surface deformation associated with slip along listric, or curviplanar, thrust faults
Measurement of the total angiotensinogen and its reduced and oxidised forms in human plasma using targeted LC-MS/MS.
Angiotensinogen (AGT) is a critical protein in the renin-angiotensin-aldosterone system and may have an important role in the pathogenesis of pre-eclampsia. The disulphide linkage between cysteines 18 and 138 has a key role in the redox switch of AGT which modulates the release of angiotensin I with consequential effects on blood pressure. In this paper, we report a quantitative targeted LC-MS/MS method for the reliable measurement of the total AGT and its reduced and oxidised forms in human plasma. AGT was selectively enriched from human plasma using two-dimensional chromatography employing concanavalin A lectin affinity and reversed phase steps and then deglycosylated using PNGase F. A differential alkylation approach was coupled with targeted LC-MS/MS method to identify the two AGT forms in the plasma chymotryptic digest. An additional AGT proteolytic marker peptide was identified and used to measure total AGT levels. The developed MS workflow enabled the reproducible detection of total AGT and its two distinct forms in human plasma with analytical precision of ≤ 15%. The LC-MS/MS assay for total AGT in plasma showed a linear response (R2 = 0.992) with a limit of quantification in the low nanomolar range. The method gave suitable validation characteristics for biomedical application to the quantification of the oxidation level and the total level of AGT in plasma samples collected from normal and pre-eclamptic patients
Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms
The diversity of arbuscular mycorrhizal (AM) fungi was investigated in an unfertilized limestone grassland soil supporting different synthesized vascular plant assemblages that had developed for 3 yr. The experimental treatments comprised: bare soil; monocultures of the nonmycotrophic sedge Carex flacca; monocultures of the mycotrophic grass Festuca ovina; and a species-rich mixture of four forbs, four grasses and four sedges. The diversity of AM fungi was analysed in roots of Plantago lanceolata bioassay seedlings using terminal-restriction fragment length polymorphism (T-RFLP). The extent of AM colonization, shoot biomass and nitrogen and phosphorus concentrations were also measured. The AM diversity was affected significantly by the floristic composition of the microcosms and shoot phosphorus concentration was positively correlated with AM diversity. The diversity of AM fungi in P. lanceolata decreased in the order: bare soil > C. flacca > 12 species > F. ovina. The unexpectedly high diversity in the bare soil and sedge monoculture likely reflects differences in the modes of colonization and sources of inoculum in these treatments compared with the assemblages containing established AM-compatible plants
A Local Moment Approach to magnetic impurities in gapless Fermi systems
A local moment approach is developed for the single-particle excitations of a
symmetric Anderson impurity model (AIM), with a soft-gap hybridization
vanishing at the Fermi level with a power law r > 0. Local moments are
introduced explicitly from the outset, and a two-self-energy description is
employed in which the single-particle excitations are coupled dynamically to
low-energy transverse spin fluctuations. The resultant theory is applicable on
all energy scales, and captures both the spin-fluctuation regime of strong
coupling (large-U), as well as the weak coupling regime. While the primary
emphasis is on single particle dynamics, the quantum phase transition between
strong coupling (SC) and (LM) phases can also be addressed directly; for the
spin-fluctuation regime in particular a number of asymptotically exact results
are thereby obtained. Results for both single-particle spectra and SC/LM phase
boundaries are found to agree well with recent numerical renormalization group
(NRG) studies. A number of further testable predictions are made; in
particular, for r < 1/2, spectra characteristic of the SC state are predicted
to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is
approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are
moreover recovered smoothly from the limit r -> 0, where the resultant
description of single-particle dynamics includes recovery of Doniach-Sunjic
tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid
behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed
Matte
Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: One-dimensional examples
We introduce a strong-disorder renormalization group (RG) approach suitable
for investigating the quasiparticle excitations of disordered superconductors
in which the quasiparticle spin is not conserved. We analyze one-dimensional
models with this RG and with elementary transfer matrix methods. We find that
such models with broken spin rotation invariance {\it generically} lie in one
of two topologically distinct localized phases. Close enough to the critical
point separating the two phases, the system has a power-law divergent
low-energy density of states (with a non-universal continuously varying
power-law) in either phase, due to quantum Griffiths singularities. This
critical point belongs to the same infinite-disorder universality class as the
one dimensional particle-hole symmetric Anderson localization problem, while
the Griffiths phases in the vicinity of the transition are controlled by lines
of strong (but not infinite) disorder fixed points terminating in the critical
point.Comment: 14 pages (two-column PRB format), 9 eps figure
Local interactions and global properties of wild, free-ranging stickleback shoals
Funding: Australian Research Council. A.J.W.W. and T.M.S. were supported by a Discovery Project Grant from the Australian Research Council. D.J.T.S. and J.E.H.-R. were supported by a Knut & Alice Wallenberg Foundation Grant.Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.Publisher PDFPeer reviewe
- …