110 research outputs found

    The Cost Of Reinforcement: Selection On Flower Color In Allopatric Populations Of Phlox Drummondii*

    Get PDF
    Reinforcement is the process by which increased reproductive isolation between incipient species evolves due to selection against maladaptive hybrids or costly hybrid mating. Reinforcement is predicted to create a pattern of greater prezygotic reproductive isolation in regions where the two species co-occur, sympatry, than in allopatry. Although most research on reinforcement focuses on understanding the evolutionary forces acting in sympatry, here we consider what prevents the alleles conferring greater reproductive isolation from spreading into allopatry. We investigate flower color divergence in the wildflower Phlox drummondii, which is caused by reinforcement in the regions sympatric with its congener Phlox cuspidata. Specifically, we performed common garden field experiments and pollinator observations to estimate selection acting on flower color variation in allopatry. We combine our estimates of maternal and paternal fitness using simulations and predict how flower color alleles migrating from sympatry will evolve in allopatry. Our results suggest that strong pollinator preference for the ancestral flower color in allopatry can maintain divergence between allopatric and sympatric populations.Integrative Biolog

    Selection through female fitness helps to explain the maintenance of male flowers

    Get PDF
    Andromonoecy, the production of both male and hermaphrodite flowers in the same individual, is a widespread phenomenon that occurs in approximately 4,000 species distributed in 33 families. Hypotheses for the evolution of andromonoecy suggest that the production of intermediate proportions of staminate flowers may be favored by selection acting through female components of fitness. Here we used the andromonoecious herb Solanum carolinense to determine the pattern of selection on the production of staminate flowers. A multivariate analysis of selection indicates that selection through female fitness favors the production of staminate flowers in at least one population. We conclude that this counterintuitive benefit of staminate flowers on female fitness highlights the importance of considering female components of fitness in the evolution of andromonoecy, a reproductive system usually interpreted as a "male" strategy

    Genetics of Resistance to the Rust Fungus Coleosporium ipomoeae in Three Species of Morning Glory (Ipomoea)

    Get PDF
    We examined the genetic basis of resistance to the rust pathogen Coleosporium ipomoea in three host species: Ipomoea purpurea, I. hederacea, and I. coccinea (Convolvulaceae). In crosses between resistant and susceptible individuals, second-generation selfed offspring segregated in ratios that did not differ statistically from the 3∶1 ratio indicative of single-gene resistance with the resistant allele dominant. One out of three crosses between resistant individuals from two different populations revealed that resistance loci differed in the two populations, as evidenced by the production of susceptible individuals among the S2 generation. These results suggest that gene-for-gene interactions contribute substantially to the dynamics of coevolution in this natural pathosystem. They also suggest that evolution of resistance to the same pathogen strain may involve different loci in different Ipomoea populations

    Effects of Plant Sex on Range Distributions and Allocation to Reproduction

    Get PDF
    Despite an abundance of theory, few empirical studies have explored the ecological and evolutionary consequences of sex. We used a comparative phylogenetic approach to examine whether transitions between sexual and asexual reproduction are associated with changes in the size and distribution of species’ geographical ranges, and their investment in reproduction. Here, we reconstructed the phylogeny of the genus Oenothera sections Oenothera and Calylophus (Onagraceae), which contain 35 sexual and 30 functionally asexual species. From each species, we collected data on the geographical distribution and variation in plant traits related to reproduction. Functionally asexual species occurred at higher latitudes, but did not differ in range size, compared with sexual species. Transitions to asexuality were associated with decreased investment in floral structures, including the length of petals, floral tubes and styles. Decreased anther size and increased seed size within asexual species also suggest altered allocation to male and female fitness. The observed range shifts are consistent with superior colonization of environments by asexual species following glaciation, and the observed changes in reproductive allocation support predictions made by models relating to the evolution of selfing. Our results suggest that the evolutionary consequences of asexual reproduction might be less restrictive than previously thought

    the american naturalist december

    No full text
    abstract: Tolerance to herbivory minimizes the effects of herbivory on plant fitness. In the presence of herbivores, maximal levels of tolerance may be expected to evolve. In many plant species, however, tolerance is found at an intermediate level. Tolerance may be prevented from evolving to a maximal level by genetic constraints or stabilizing selection. We report on a field study of Ipomoea purpurea, the common morning glory, in which we measured three types of costs that may be associated with tolerance and the pattern of selection acting on tolerance to two types of herbivore damage: apical meristem damage and folivory. We used genetic correlations to test for the presence of three types of costs: a trade-off between tolerance and fitness in the absence of herbivore damage, a trade-off between tolerance and resistance, and genetic covariances among tolerance to different types of damage. We found no evidence that tolerance to apical meristem damage or tolerance to folivory was correlated with resistance, although these two types of tolerance were positively correlated with one another. Tolerance to both types of damage involved costs of lower fitness in the absence of herbivory. Selection acting on tolerance to either type of herbivory was not detected at natural levels of herbivory. Selection is expected to act against tolerance at reduced levels of herbivory and favor tolerance at elevated levels of herbivory. In addition, significant correlational selection gradients indicate that the pattern of selection acting on tolerance depends on values of resistance. Although we found no evidence for stabilizing selection, fluctuating selection resulting from fluctuating herbivore loads may be responsible for maintaining tolerance at an intermediate level

    Data from: The cost of reinforcement: selection on flower color in allopatric populations of Phlox drummondii

    No full text
    Reinforcement is the process by which increased reproductive isolation between incipient species evolves due to selection against maladaptive hybrids or costly hybrid mating. Reinforcement is predicted to create a pattern of greater prezygotic reproductive isolation in regions where the two species co-occur, sympatry, than in allopatry. Although most research on reinforcement focuses on understanding the evolutionary forces acting in sympatry, here we consider what prevents the alleles conferring greater reproductive isolation from spreading into allopatry. We investigate flower color divergence in the wildflower Phlox drummondii, which is caused by reinforcement in the regions sympatric with its congener Phlox cuspidata. Specifically, we performed common garden field experiments and pollinator observations to estimate selection acting on flower color variation in allopatry. We combine our estimates of maternal and paternal fitness using simulations and predict how flower color alleles migrating from sympatry will evolve in allopatry. Our results suggest that strong pollinator preference for the ancestral flower color in allopatry can maintain divergence between allopatric and sympatric populations

    Data from: Evolution of resistance to a multiple-herbavore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection

    No full text
    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities—particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance
    corecore