45 research outputs found

    Persistence of the Exotic Mirid \u3ci\u3eNesidiocoris tenuis\u3c/i\u3e (Hemiptera: Miridae) in South Texas

    Get PDF
    The Rio Grande Valley is one of the most productive agricultural areas in the U.S and is located in the southernmost part of Texas. In October 2013, we detected an exotic plant bug, Nesidiocoris tenuis Reuter (Hemiptera: Miridae: Bryocorinae) occurring in the region. Nesidiocoris tenuis has zoophytophagous habits; however, in the absence of insect prey, it feeds on its plant hosts. After its morphological and genetic identification, this study monitored the population of N. tenuis in its introduction phase in commercial fields and corroborated its establishment in research fields for three years. Populations of N. tenuis were high during the fall and low during winter. This study found that N. tenuis populations were higher in tomato fields as compared to adjacent pepper, okra, and squash fields, indicating its host preferences during the introduction phase. Recurrent population growth patterns suggest that N. tenuis was established in Rio Grande Valley with permanent populations in tomato fields. In addition, N. tenuis populations were affected by tomato cultivar selection and by plastic mulch color. The presence of N. tenuis could establish a new trophic insect relationship for vegetable production. However, it is unknown if the presence of N. tenuis may help to control pests of economic importance, such as whiteflies in cotton, or become a pest on sesame, an emerging crop

    Parasitism of Corn Earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), by Tachinid Flies in Cultivated Hemp

    Get PDF
    In a survey on hemp grown in western Kentucky we found an average of 27.8 CEW larvae per plant. We recorded 45% parasitism of CEW in these fields by two species of tachinid flies, Winthemia rufopicta and Lespesia aletiae. Most parasitized larvae were third to sixth instars at the time of collection. We found up to 22 tachinid eggs per host larva, 89% of which typically bore between 1 and 5 eggs on the thorax. 45.9% of CEW bearing eggs died. The number of tachinid eggs per host was unrelated to host body mass, but both the number of tachinid eggs and caterpillar body mass influenced CEW survival. Larger CEW often survived parasitism and the number of fly eggs was negatively related to survival rate. The emergence of adult flies was positively correlated with the number of eggs, but no influence of the host size was found. High mortality of CEW larvae and the parasitoids developing within them in this system suggests that secondary chemicals (or poor nutrition) of the hemp diet may be negatively affecting host and parasitoid development and influencing their interactions

    Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection

    Get PDF
    Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900–1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars

    Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review

    Get PDF
    In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers\u27 expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects\u27 attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods\u27 application in the detection and classification of insect infestation in fruits and vegetables

    The places parents go: understanding the breadth, scope, and experiences of activity spaces for parents

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10708-015-9690-yNeighborhood environments are related to parenting behaviors, which in turn have a life-long effect on children’s health and well-being. Activity spaces, which measure individual routine patterns of movement, may be helpful in assessing how physical and social environments shape parenting. In this study we use qualitative data and GIS mapping from four California cities to examine parental activity spaces. Parents described a number of factors that shape their activity spaces including caregiving status, the age of their children, and income. Parental activity spaces also varied between times (weekends vs. weekdays) and places (adult-only vs. child-specific places). Knowing how to best capture and study parental activity spaces could identify mechanisms by which environmental factors influence parenting behaviors and child health

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Two Species of Cecidomyiidae Predacious on Citrus Rust Mite, \u3ci\u3ePhyllocoptruta Oleivora\u3c/i\u3e, on Florida Citrus

    Get PDF
    Larvae of two undescribed species of Cecidomyiidae (Diptera) were found preying upon Phyllocoptruta oleivora (Ashmead) (Acari: Eriophyidae) on Florida citrus. Identifications to genus were made from adults reared in the laboratory. The two species had distinctive larval coloration. One larval type was completely yellow and was identified as Feltiella n. sp., while the second larval type had an orange color with a transverse white band close to the mouthparts. The latter cecidomyiid was identified as belonging to a genus near Lestodiplosis in the broad sense. Feltiella n. sp. (n = 17) and the species near the genus Lestodiplosis (n = 12) consumed 33.8 ± 4.6 (mean ± SEM) and 43.0 ± 6.4 citrus rust mite eggs; 14.2 ± 1.4 and 15.0 ± 2.0 citrus rust mite nymphs, and 3.0 ± 0.4 and 5.6 ± 0.9 citrus rust mite adults/10 min., respectively. There were no significant differences ( P \u3e 0.05) in the consumption rates of either predator on any rust mite life stage. These data indicate that Feltiella n. sp. and the species near the genus Lestodiplosis are both efficient predators of P. oleivora eggs, larvae, and nymphs
    corecore