388 research outputs found
Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery
Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (\u3e50 m wide). We present a method for estimating volumetric river discharge in low-order (wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substantial portion of the river bed. Topography of the exposed river bed was photogrammetrically extracted from high-resolution aerial imagery while the geometry of the remaining inundated portion of the channel was approximated based on adjacent bank topography and maximum depth assumptions. Full channel bathymetry was used to create hydraulic models that encompassed virtual gauging stations. Discharge for each aerial survey was estimated with the hydraulic model by matching modeled and remotely sensed wetted widths. Based on these results, synthetic width-discharge rating curves were produced for each virtual gauging station. In situ observations were used to determine the accuracy of wetted widths extracted from imagery (mean error 0.36 m), extracted bathymetry (mean vertical RMSE 0.23 m), and discharge (mean percent error 7% with a standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%–27%
Neck-cooling improves repeated sprint performance in the heat
The present study evaluated the effect of neck-cooling during exercise on repeated sprint ability in a hot environment. Seven team-sport playing males completed two experimental trials involving repeated sprint exercise (5 × 6 s) before and after two 45 min bouts of a football specific intermittent treadmill protocol in the heat (33.0 ± 0.2°C; 53 ± 2% relative humidity). Participants wore a neck-cooling collar in one of the trials (CC). Mean power output and peak power output declined over time in both trials but were higher in CC (540 ± 99 v 507 ± 122 W, d = 0.32; 719 ± 158 v 680 ± 182 W, d = 0.24 respectively). The improved power output was particularly pronounced (d = 0.51–0.88) after the 2nd 45 min bout but the CC had no effect on % fatigue. The collar lowered neck temperature and the thermal sensation of the neck (P 0.05). There were no trial differences but interaction effects were demonstrated for prolactin concentration and rating of perceived exertion (RPE). Prolactin concentration was initially higher in the collar cold trial and then was lower from 45 min onwards (interaction trial × time P = 0.04). RPE was lower during the football intermittent treadmill protocol in the collar cold trial (interaction trial × time P = 0.01). Neck-cooling during exercise improves repeated sprint performance in a hot environment without altering physiological or neuroendocrinological responses. RPE is reduced and may partially explain the performance improvement
Preventing Running Injuries Using a Pre-Running Exercise Program (PREP): A Pilot Study
Hypothesis: An 8 week supervised PREP implemented prior to a 5k running program will reduce the incidence of RRI\u27s among novice runners training for a 5k below the previously published incidence rates
Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
Groundwater flow regimes in the seasonally thawed soils in areas of continuous permafrost are relatively unknown despite their potential role in delivering water, carbon, and nutrients to streams. Using numerical groundwater flow models informed by observations from a headwater catchment in arctic Alaska, United States, we identify several mechanisms that result in substantial surface‐subsurface water exchanges across the land surface during downslope transport and create a primary control on dissolved organic carbon loading to streams and rivers. The models indicate that surface water flowing downslope has a substantial groundwater component due to rapid surface‐subsurface exchanges across a range of hydrologic states, from unsaturated to flooded. Field‐based measurements corroborate the high groundwater contributions, and river dissolved organic carbon concentrations are similar to that of groundwater across large discharge ranges. The persistence of these groundwater contributions in arctic watersheds will influence carbon export to rivers as thaw depth increases in a warmer climate
Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds
Groundwater flow regimes in the seasonally thawed soils in areas of continuous permafrost are relatively unknown despite their potential role in delivering water, carbon, and nutrients to streams. Using numerical groundwater flow models informed by observations from a headwater catchment in arctic Alaska, United States, we identify several mechanisms that result in substantial surface‐subsurface water exchanges across the land surface during downslope transport and create a primary control on dissolved organic carbon loading to streams and rivers. The models indicate that surface water flowing downslope has a substantial groundwater component due to rapid surface‐subsurface exchanges across a range of hydrologic states, from unsaturated to flooded. Field‐based measurements corroborate the high groundwater contributions, and river dissolved organic carbon concentrations are similar to that of groundwater across large discharge ranges. The persistence of these groundwater contributions in arctic watersheds will influence carbon export to rivers as thaw depth increases in a warmer climate
Roll24
The problem for bed-bound patients is that nurses and caretakers may not be able to help the patients 24/7. Our solution fills the gap throughout the day and night and would allow for patients to be repositioned consistently during short-staffed shifts. This product is currently designed for patients in care homes and indivicaredual homes but may be subject to change. There are other similar products in the market but are very expensive [1]. Our goal is to create an affordable, adaptable option that can work for many bedbound patients
Lactate saturation limits bicarbonate detection in hyperpolarized 13 C-pyruvate MRI of the brain
PURPOSE: To investigate the potential effects of [1‐(13)C]lactate RF saturation pulses on [(13)C]bicarbonate detection in hyperpolarized [1‐(13)C]pyruvate MRI of the brain. METHODS: Thirteen healthy rats underwent MRI with hyperpolarized [1‐(13)C]pyruvate of either the brain (n = 8) or the kidneys, heart, and liver (n = 5). Dynamic, metabolite‐selective imaging was used in a cross‐over experiment in which [1‐(13)C]lactate was excited with either 0° or 90° flip angles. The [(13)C]bicarbonate SNR and apparent [1‐(13)C]pyruvate‐to‐[(13)C]bicarbonate conversion (k (PB)) were determined. Furthermore, simulations were performed to identify the SNR optimal flip‐angle scheme for detection of [1‐(13)C]lactate and [(13)C]bicarbonate. RESULTS: In the brain, the [(13)C]bicarbonate SNR was 64% higher when [1‐(13)C]lactate was not excited (5.8 ± 1.5 vs 3.6 ± 1.3; 1.2 to 3.3–point increase; p = 0.0027). The apparent k (PB) decreased 25% with [1‐(13)C]lactate saturation (0.0047 ± 0.0008 s(−1) vs 0.0034 ± 0.0006 s(−1); 95% confidence interval, 0.0006–0.0019 s(−1) increase; p = 0.0049). These effects were not present in the kidneys, heart, or liver. Simulations suggest that the optimal [(13)C]bicarbonate SNR with a TR of 1 s in the brain is obtained with [(13)C]bicarbonate, [1‐(13)C]lactate, and [1‐(13)C]pyruvate flip angles of 60°, 15°, and 10°, respectively. CONCLUSIONS: Radiofrequency saturation pulses on [1‐(13)C]lactate limit [(13)C]bicarbonate detection in the brain specifically, which could be due to shuttling of lactate from astrocytes to neurons. Our results have important implications for experimental design in studies in which [(13)C]bicarbonate detection is warranted
Charge Exchange X-ray Emission of Nearby Star-forming Galaxies
Properties of hot gas outflows from galaxies are generally measured from
associated X-ray line emission assuming that it represents atomic transitions
in thermally excited hot gas. X-ray line emission, however, can also arise from
the charge exchange between highly ionised ions and neutral species. The
K\alpha\ triplet of He-like ions can be used as a powerful diagnostic, because
the charge exchange X-ray emission (CXE) favours the inter-combination and
forbidden lines, while the thermal emission favours the resonance line. We
analyse the OVII triplet of a sample of nine nearby star-forming galaxies
observed by the XMM-Newton reflection grating spectrometers. For most galaxies,
the forbidden lines are comparable to or stronger than the resonance lines,
which is in contrast to the thermal prediction. For NGC 253, M51, M83, M61, NGC
4631, and the Antennae galaxy, the observed line ratios are consistent with the
ratio of the CXE; for M94 and NGC 2903, the observed ratios indicate multiple
origins; for M82, different regions show different line ratios, also indicating
multiple origins. We discuss other possible mechanisms that can produce a
relatively strong forbidden line, such as a collisional
non-equilibrium-ionization recombining/ionizing plasma, which are not favoured.
These results suggest that the CXE may be a common process and contribute a
significant fraction of the soft X-ray line emission for galaxies with massive
star formation.Comment: 8 pages, 5 figures, accepted for publication in MNRA
A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations.
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.This research was supported by ERC Starting Investigator grant (FP7 - 261213) to
T.K. http://erc.europa.eu/. CTS, YX, QA and MS were supported by the Wellcome Trust
(098051). TA was supported by The Wellcome Trust (WT100066MA). M.M and R.V. were
supported by EU ERDF Centre of Excellence in Genomics to EBC; T.K, M.M and R.V. by
Estonian Institutional Research grant (IUT24-1), and M.M by Estonian Science Foundation
(grant 8973).This is the accepted manuscript. The final version is available from Cell/Elsevier at http://www.cell.com/ajhg/abstract/S0002-9297%2814%2900422-4
Methane and carbon monoxide emissions from asphalt pavement: Measurements and estimates of their importance to global budgets
We measured emissions of methane from asphalt surfaces used in pavement for roadways. Maximum emissions were 22 mg/m2/yr for 1- to 4-week-old pavement during maximum sunlight intensity. Emissions were much smaller at low sunlight intensity and dropped off to negligible amounts at night. Smaller emissions were observed for asphalt pavement of 2.5 to 3 years approximate age under similar conditions. Companion measurements of carbon monoxide emissions resulted in maximum emissions of about 2.6 mg/m2/hr for 1-wk-old pavement. These findings indicate that emissions of CH4 and CO are a function of both sunlight and temperature. Based on our results, methane emissions from asphalt pavement cannot be a significant source of atmospheric methane. -from Author
- …