25 research outputs found

    Data analysis and interpretation related to space system/environment interactions at LEO altitude

    Get PDF
    Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter

    SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    Get PDF
    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance

    Plasma Density Features Associated with Strong Convection in the Winter High-Latitude F Region

    Get PDF
    We combined a simple plasma convection model with an ionospheric-atmospheric composition model in order to study the plasma density features associated with strong convection in the winter high-latitude F region. Our numerical study produced time-dependent, three-dimensional, ion density distributions for the ions NO+, O2 +, N2 +, O+, N+, and He+. We covered the high-latitude ionosphere above 42° N magnetic latitude and at altitudes between 160 and 800 km for a time period of one complete day. From our study, we found the following: (1) For strong convection, the electron density exhibits a significant variation with altitude, latitude, longitude, and universal time. A similar result was obtained in our previous study dealing with a weak convection model. (2) For strong convection, ionospheric features, such as the main trough, the aurorally produced ionization peaks, the polar hole, and the tongue of ionization, are evident but they are modified in comparison with those found for slow convection. (3) For strong convection, the tongue of ionization is much more pronounced than for weak convection. (4) The polar hole that is associated with quiet geomagnetic activity conditions does not form when the plasma convection is strong. (5) For strong convection, a new polar hole appears in the polar cap at certain universal times. This new polar hole is associated with large downward, electrodynamic plasma drifts. (6) For strong convection, the main or mid-latitude electron density trough is not as deep as that found for a weak convection model. However, it is still strongly UT dependent. (7) The ionospheric parameters NmF 2, hmF 2, and the topside plasma density scale height exhibit an appreciable variation over the polar region at a given UT

    Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    Get PDF
    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads

    Observations of the Diurnal Dependence of the High-Latitude \u3ci\u3eF\u3c/i\u3e Region Ion Density by DMSP Satellites

    Get PDF
    Data from the DMSP F2 and F4 satellites for the period December 5-10, 1979, have been used to study the diurnal dependence of the high-latitude ion density at 800-km altitude. A 24-hour periodicity in the minimum orbital density (MOD) during a crossing of the high-latitude region is observed in both the winter and summer hemispheres. The phase of the variation in MOD is such that it has a minimum during the 24-hour period between 0700 and 0900 UT. Both the long term variation of the high-latitude ion density on a time scale of days, and the orbit by orbit variations at the same geomagnetic location in the northern (winter) hemisphere for the magnetically quiet time period chosen show good qualitative agreement with the diurnal dependence predicted by a theoretical model of the ionospheric density at high latitudes under conditions of low convection speeds (Sojka et al., 1981a)

    High Latitude Plasma Convection: Predictions for EISCAT and Sondre Stromfjord

    Get PDF
    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4° between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5° in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross‐ tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon‐midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of these high‐latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    Circuit Model Simulations for Ionospheric Plasma Response to High Potential System

    No full text
    When a deployed probe is biased by a high positive potential during a space experiment, the payload is induced to a negative voltage in order to balance the total current in the whole system. The return currents are due to the responding ions and secondary electrons on the payload surface. In order to understand the current collection mechanism, the process was simulated with a combination of resistor, inductor, and capacitor in SPICE program which was equivalent to the background plasma sheath. The simulation results were compared with experimental results from SPEAR-3 (Space Power Experiment Aboard Rocket-3). The return current curve in the simulation was compatible to the experimental result, and the simulation helped to predict the transient plasma response to a high voltage during the plasma sheath formation

    Theoretical Predictions for Ion Composition in the High-Latitude Winter F-Region for Solar Minimum and Low Magnetic Activity

    Get PDF
    We combined a simple plasma convection model with an ionospheric-atmospheric density model in order to study the ion composition in the high-latitude winter F-region at solar minimum for low geomagnetic activity. Our numerical study produced time-dependent, 3-dimensional, ion density distributions for the ions NO+, O2 +, N2 +, O+, N+, and He+. We covered the high-latitude ionosphere above 54°N magnetic latitude and at altitudes between 160 and 800 km for a time period of 1 complete day. From our study we found the following (1) The ion composition exhibits a significant variation with latitude, local time, altitude, and universal time. (2) The variations of the ion composition with latitude and local time are in good agreement with the Atmosphere Explorer measurements both quantitatively and qualitatively. (3) At times and at certain locations the molecular ion density can be comparable to the O+ density at 300 km, and at 200 km the O+ density can be comparable to the molecular ion density. These results have important implications for the interpretation of incoherent scatter radar spectra obtained at high-latitudes. (4) Different ground-based observation sites should measure different diurnal variations in ion composition even if these sites are approximately at the same magnetic latitude owing to the UT response of the high-latitude ionosphere. (5) A satellite in a 300 km circular polar orbit should measure large orbit to orbit variations in both electron density and ion composition, again owing to the UT response of the polar ionosphere. (6) Erroneous conclusions can be drawn about ion density scale heights if the variations along the track of a satellite in a highly elliptical polar orbit are assumed to be only due to altitude variations

    High Latitude Plasma Convection: Predictions for EISCAT and Sondre Stromfjord

    Get PDF
    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4° between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5° in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross‐ tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon‐midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of these high‐latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field
    corecore