190 research outputs found

    UHECR observations and lensing in the magnetic field of the Virgo cluster

    Full text link
    We discuss how lensing by magnetic fields in galaxy clusters affects ultrahigh energy cosmic ray (UHECR) observations. As specific example, we use Virgo together with the cluster magnetic fields obtained earlier in a constrained simulation of structure formation including MHD processes. We find that, if M87 is the single source of UHECRs from Virgo, the emitted flux is strongly anisotropic in the most interesting energy range, (50-100)EeV, and differs from the average value by a factor five or more for a significant fraction of observers. Since magnetic lensing is energy dependent, the external energy spectrum as seen by different observers varies strongly too. These anisotropies are averaged out in the case that all active galactic nuclei in Virgo emit UHECRs. In both cases, the anisotropies of the emitted UHECR flux may introduce an important bias in the interpretation of UHECR data like, e.g., the determination of the source density n_s and the source energy spectrum of UHECRs.Comment: 12 pages, 15 eps figures; v2: extended discussion of modifications in external energy spectrum, matches version to be publishe

    BL Lac Objects in the Synchrotron Proton Blazar Model

    Get PDF
    We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high energy neutrinos from BL Lac objects in the context of the Synchrotron Proton Blazar Model. In this model, the high energy hump of the SED is due to accelerated protons, while most of the low energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV gamma-ray telescopes.Comment: 33 pages, 20 Figures. Astropart. Phys., accepte

    Neutrino Observatories Can Characterize Cosmic Sources and Neutrino Properties

    Get PDF
    Neutrino telescopes that measure relative fluxes of ultrahigh-energy νe,νμ,ντ\nu_{e}, \nu_{\mu}, \nu_{\tau} can give information about the location and characteristics of sources, about neutrino mixing, and can test for neutrino instability and for departures from CPT invariance in the neutrino sector. We investigate consequences of neutrino mixing for the neutrino flux arriving at Earth, and consider how terrestrial measurements can characterize distant sources. We contrast mixtures that arise from neutrino oscillations with those signaling neutrino decays. We stress the importance of measuring νe,νμ,ντ\nu_{e}, \nu_{\mu}, \nu_{\tau} fluxes in neutrino observatories.Comment: 9 RevTeX pages, 4 figure

    Constraining Sources of Ultra High Energy Cosmic Rays Using High Energy Observations with the Fermi Satellite

    Full text link
    We analyze the conditions that enable acceleration of particles to ultra-high energies, ~10^{20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV - GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ~10^{20} eV can only occur at distances >~ 100 kpc from the core.Comment: Extended discussion on former results; Accepted for publication in JCA

    The Origin of Galactic Cosmic Rays

    Get PDF
    Motivated by recent measurements of the major components of the cosmic radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a model in which there are two distinct kinds of cosmic ray accelerators in the galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per nucleon suggests that these two elements do not have the same spectrum of magnetic rigidity over this entire region and that these two dominant elements therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures, uuencode

    Cosmic Neutrinos and the Energy Budget of Galactic and Extragalactic Cosmic Rays

    Get PDF
    Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 10^{20} eV and 10^{13} eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. We will discuss how the cosmic ray connection sets the scale of the anticipated cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube.Comment: 13 pages, Latex2e, 3 postscript figures included. Talk presented at the International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, February 200

    A lower bound on the local extragalactic magnetic field

    Get PDF
    Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron radiation of ultra-relativistic electrons, we derive a lower bound on the local extragalactic magnetic field, B>108B> 10^{-8} G. This result is consistent with (and close to) upper bounds on magnetic fields derived from consideration of cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV in the hot spot-like region of Cen

    Precision study of radio emission from air showers at LOFAR

    Get PDF
    Radio detection as well as modeling of cosmic rays has made enormous progress in the past years. We show this by using the subtle circular polarization of the radio pulse from air showers measured in fair weather conditions and the intensity of radio emission from an air shower under thunderstorm conditions
    corecore