186 research outputs found

    Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports

    Get PDF
    Microarray-based comparative genomic hybridization (array CGH) is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances). The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner

    Cyclopia: An epidemiologic study in a large dataset from the International Clearinghouse of Birth Defects Surveillance and Research

    Get PDF
    Cyclopia is characterized by the presence of a single eye, with varying degrees of doubling of the intrinsic ocular structures, located in the middle of the face. It is the severest facial expression of the holoprosencephaly (HPE) spectrum. This study describes the prevalence, associated malformations, and maternal characteristics among cases with cyclopia. Data originated in 20 Clearinghouse (ICBDSR) affiliated birth defect surveillance systems, reported according to a single pre-established protocol. A total of 257 infants with cyclopia were identified. Overall prevalence was 1 in 100,000 births (95%CI: 0.89-1.14), with only one program being out of range. Across sites, there was no correlation between cyclopia prevalence and number of births (r=0.08; P=0.75) or proportion of elective termination of pregnancy (r=-0.01; P=0.97). The higher prevalence of cyclopia among older mothers (older than 34) was not statistically significant. The majority of cases were liveborn (122/200; 61%) and females predominated (male/total: 42%). A substantial proportion of cyclopias (31%) were caused by chromosomal anomalies, mainly trisomy 13. Another 31% of the cases of cyclopias were associated with defects not typically related to HPE, with more hydrocephalus, heterotaxia defects, neural tube defects, and preaxial reduction defects than the chromosomal group, suggesting the presence of ciliopathies or other unrecognized syndromes. Cyclopia is a very rare defect without much variability in prevalence by geographic location. The heterogeneous etiology with a high prevalence of chromosomal abnormalities, and female predominance in HPE, were confirmed, but no effect of increased maternal age or association with twinning was observed.Fil: Orioli, Ieda Maria. Instituto de Biologia; Brasil. Instituto Nacional de Genética Médica Populacional; BrasilFil: Amar, Emmanuelle. Rhone-alps Registry Of Birth Defects Remera; FranciaFil: Bakker, Marian K.. University of Groningen; Países BajosFil: Bermejo Sánchez, Eva. Instituto de Salud Carlos III; Brasil. Centro de Investigación Biomédica En Red de Enfermedades Raras; BrasilFil: Bianchi, Fabrizio. Consiglio Nazionale delle Ricerche; ItaliaFil: Canfield, Mark A.. Texas Department Of State Health Services; Estados UnidosFil: Clementi, Maurizio. Università di Padova; ItaliaFil: Correa, Adolfo. Centers for Disease Control and Prevention; BrasilFil: Csáky Szunyogh, Melinda. National Center for Healthcare Audit and Inspection; HungríaFil: Feldkamp, Marcia L.. Utah Department Of Health; Estados Unidos. University Of Utah Health Sciences; Estados UnidosFil: Landau, Danielle. Soroka University Medical Center; IsraelFil: Leoncini, Emanuele. Centre Of The International Clearinghouse For Birth Defects Surveillance And Research; ItaliaFil: Li, Zhu. Peking University Health Science Center; ChinaFil: Lowry, R. Brian. Alberta Congenital Anomalies Surveillance System; CanadáFil: Mastroiacovo, Pierpaolo. Centre Of The International Clearinghouse For Birth Defects Surveillance And Research; ItaliaFil: Morgan, Margery. the Congenital Anomaly Register for Wales; Reino UnidoFil: Mutchinick, Osvaldo M.. Instituto Nacional de la Nutrición Salvador Zubiran; MéxicoFil: Rissmann, Anke. Otto-von-Guericke-Universität Magdeburg; AlemaniaFil: Ritvanen, Annukka. National Institute For Health And Welfare; FinlandiaFil: Scarano, Gioacchino. General Hospital G. Rummo Benevento; ItaliaFil: Szabova, Elena. Slovak Medical University; EslovaquiaFil: Castilla, Eduardo Enrique. Instituto Nacional de Genética Médica Populacional; Brasil. Centro de Educación Medica E Invest.clinicas; Argentina. Fundación Oswaldo Cruz; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    An Approach to Enhance the Conservation-Compatibility of Solar Energy Development

    Get PDF
    The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity

    Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    Get PDF
    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue

    The genomic basis of adaptive evolution in threespine sticklebacks

    Get PDF
    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.National Human Genome Research Institute (U.S.)National Human Genome Research Institute (U.S.) (NHGRI CEGS Grant P50-HG002568

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Baltimore declaration toward the exploration of organoid intelligence

    Get PDF
    We, the participants of the First Organoid Intelligence Workshop - "Forming an OI Community" (22-24 February 2022), call on the international scientific community to explore the potential of human brain-based organoid cell cultures to advance our understanding of the brain and unleash new forms of biocomputing while recognizing and addressing the associated ethical implications. The term "organoid intelligence" (OI) has been coined to describe this research and development approach (1) in a manner consistent with the term "artificial intelligence" (AI) - used to describe the enablement of computers to perform tasks normally requiring human intelligence. OI has the potential for diverse and far-reaching applications that could benefit humankind and our planet, and which urge the strategic development of OI as a collaborative scientific discipline. OI holds promise to elucidate the physiology of human cognitive functions such as memory and learning. It presents game-changing opportunities in biological and hybrid computing that could overcome significant limitations in silicon-based computing. It offers the prospect of unparalleled advances in interfaces between brains and machines. Finally, OI could allow breakthroughs in modeling and treating dementias and other neurogenerative disorders that cause an immense and growing disease burden globally. Realizing the world-changing potential of OI will require scientific breakthroughs. We need advances in human stem cell technology and bioengineering to recreate brain architectures and to model their potential for pseudo-cognitive capabilities. We need interface breakthroughs to allow us to deliver input signals to organoids, measure output signals, and employ feedback mechanisms to model learning processes. We also need novel machine learning, big data, and AI technologies to allow us to understand brain organoids
    corecore