175 research outputs found

    Evidence maps and evidence gaps: evidence review mapping as a method for collating and appraising evidence reviews to inform research and policy

    Get PDF
    Evidence reviews are a key mechanism for incorporating extensive, complex and specialised evidence into policy and practice, and in guiding future research. However, evidence reviews vary in scope and methodological rigour, creating several risks for decision-makers: decisions may be informed by less reliable reviews; apparently conflicting interpretations of evidence may obfuscate decisions; and low quality reviews may create the perception that a topic has been adequately addressed, deterring new syntheses (cryptic evidence gaps). We present a new approach, evidence review mapping, designed to produce a visual representation and critical assessment of the review landscape for a particular environmental topic or question. By systematically selecting and describing the scope and rigour of each review, this helps guide non-specialists to the most relevant and methodologically reliable reviews. The map can also direct future research through the identification of evidence gaps (whether cryptic or otherwise) and redundancy (multiple reviews on similar questions). We consider evidence review mapping a complementary approach to systematic reviews and systematic maps of primary literature and an important tool for facilitating evidence-based decision-making and research efficiency

    Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    Get PDF
    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    The Role of Tourism and Recreation in the Spread of Non-Native Species: A Systematic Review and Meta-Analysis

    Get PDF
    Managing the pathways by which non-native species are introduced and spread is considered the most effective way of preventing species invasions. Tourism and outdoor recreation involve the frequent congregation of people, vehicles and vessels from geographically diverse areas. They are therefore perceived to be major pathways for the movement of non-native species, and ones that will become increasingly important with the continued growth of these sectors. However, a global assessment of the relationship between tourism activities and the introduction of non-native species–particularly in freshwater and marine environments–is lacking. We conducted a systematic review and meta-analysis to determine the impact of tourism and outdoor recreation on non-native species in terrestrial, marine and freshwater environments. Our results provide quantitative evidence that the abundance and richness of non-native species are significantly higher in sites where tourist activities take place than in control sites. The pattern was consistent across terrestrial, freshwater and marine environments; across a variety of vectors (e.g. horses, hikers, yachts); and across a range of taxonomic groups. These results highlight the need for widespread biosecurity interventions to prevent the inadvertent introduction of invasive non-native species (INNS) as the tourism and outdoor recreation sectors grow

    Strengthen causal models for better conservation outcomes for human well-being

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.All data files are available on github at www.github.com/scheng87/ toc.Background Understanding how the conservation of nature can lead to improvement in human conditions is a research area with significant growth and attention. Progress towards effective conservation requires understanding mechanisms for achieving impact within complex social-ecological systems. Causal models are useful tools for defining plausible pathways from conservation actions to impacts on nature and people. Evaluating the potential of different strategies for delivering co-benefits for nature and people will require the use and testing of clear causal models that explicitly define the logic and assumptions behind cause and effect relationships. Objectives and methods In this study, we outline criteria for credible causal models and systematically evaluated their use in a broad base of literature (~1,000 peer-reviewed and grey literature articles from a published systematic evidence map) on links between nature-based conservation actions and human well-being impacts. Results Out of 1,027 publications identified, only ~20% of articles used any type of causal models to guide their work, and only 14 total articles fulfilled all criteria for credibility. Articles rarely tested the validity of models with empirical data. Implications Not using causal models risks poorly defined strategies, misunderstanding of potential mechanisms for affecting change, inefficient use of resources, and focusing on implausible efforts for achieving sustainability.Science for Nature and People Partnership (SNAPP)National Institute for Health Research (NIHR

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore