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What is already known 

• The reliability (transparency and repeatability) of search strategies of environmental evidence reviews 

needs to be improved. 

What is new 

• First assessment of impacts of search strategies relying only on widely used bibliographic platform(s) 

on effect sizes provided in published environmental meta-analyses. 

•  Restricting searches to a few, widely used, bibliographic platform(s) may lead to provision of biased 

estimates of effect sizes. Such practice is unlikely to lead to representative samples of primary studies 

due to missing studies from grey literature, unpublished data and non-English-language publications. 

Potential impact for RSM readers outside the authors’ field 
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• Although it is crude, we estimate that about 35% of meta-analyses have high risk of availability bias 

when restricting searches to widely used bibliographic platform(s). The generalizability of this finding 

needs to be investigated in other fields. 

 

Abstract 

Results of meta-analyses are potentially valuable for informing environmental policy and practice decisions. 

However, selective sampling of primary studies through searches exclusively using widely used bibliographic 

platform(s) could bias estimates of effect sizes. Such search strategies are common in environmental evidence 

reviews, and if risk of bias can be detected, this would provide the first empirical evidence that 

comprehensiveness of searches needs to be improved. We compare the impact of using single and multiple 

bibliographic platform(s) searches versus more comprehensive searches on estimates of mean effect sizes. We 

used 137 published meta-analyses, based on multiple source searches, analysing 9388 studies: 8095 sourced 

from commercially published articles; and 1293 from grey literature and unpublished data. Single-platform 

and multiple-platform searches missed studies in 100 and 80 of the meta-analyses, respectively: 52 and 46 

meta-analyses provided larger-effect estimates; 32 and 28 meta-analyses provided smaller-effect estimates; 

eight and four meta-analyses provided opposite direction of estimates; and two each were unable to estimate 

effects due to missing all studies. Further, we found significant positive log-linear relationships between 

proportions of studies missed and the deviations of mean effect sizes, suggesting that as the number of studies 

missed increases, deviation of mean effect size is likely to expand. We also found significant differences in 

mean effect sizes between indexed and non-indexed studies for 35% of meta-analyses, indicating high risk of 

bias when the searches were restricted. We conclude that the restricted searches are likely to lead to 

unrepresentative samples of studies and biased estimates of true effects. 

 

This article is protected by copyright. All rights reserved.



Page  of 29 
 

Keywords: Availability bias, Database bias, Language bias, Location bias, Publication bias 

1. INTRODUCTION 

Since the emergence of meta-analysis, a statistical tool for combining the magnitude of effect (effect size) 

across different studies, reporting the quantitative aggregation of effect has become commonplace 1–3, and it is 

now often performed in the “gold standard” evidence synthesis methodology: systematic reviews, in which 

comprehensive searches for relevant primary studies are conducted, thus enabling more reliable statistical 

estimate of effect of interest. 4–6 The contributions of meta-analysis are not limited to enabling quantitative 

assessment of effect of interest and its variation, but also represent a cultural change in the use of scientific 

evidence, as well as raising the standard of reporting, and therefore meta-analysis is recognized as an essential 

contributor to scientific progress. 7 

However, earlier research has shown that omission of certain data sources could lead to biased estimate of 

effect of interest due to revealed biases in statistical results. For example, it is widely recognized that 

exclusion of grey literature and unpublished data can impact on meta-analytical estimates due to publication 

bias. 8,9 Also, it has been shown that if relevant non-English-language literature is omitted during literature 

searches, different meta-analytical inferences could be drawn due to language bias. 10–12 Such empirical 

evidence suggests that if meta-analytical reviewers intentionally or unintentionally sample primary studies in a 

selective way during literature searches (e.g., collect only studies from commercially published articles or 

those published in English-language), meta-analyses are expected to provide potentially biased estimates of 

overall effects. The reliability of statistical estimates therefore largely depends on how literature searching or 

data collection is conducted, hence the search strategy is of paramount importance to meta-analytical 

estimates. 5,6 

One of the most commonly applied search strategies in environmental evidence reviews is the sole use of 

widely recognized bibliographic platform(s) 13, for example, Web of Science (“WoS” hereon; 
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www.webofknowledge.com). Earlier studies showed that the vast majority of environmental evidence reviews 

relied on limited bibliographic sources, 14,15 presumably because academic institutions have access to such 

platforms for educational and research purposes, and therefore academic researchers are familiar with them, 

and if, for example, resources are limited (e.g., time, funding) or reviewers are unwilling to carry out 

supplementary searches (e.g., web-based searches, contacting experts and stakeholders), certain bibliographic 

platform(s) are used as the sole source for searching literature. A major problem in using single bibliographic 

platforms as search sources is that they contain only selected records from all existing data (i.e., records 

selectively made available to users as a service) with a very strong preference for commercially published 

articles 13, and therefore it is possible that meta-analytical estimates relying on such practice will be affected 

(Figure 1). In other words, studies indexed in such bibliographic platform(s) may not represent the true 

population of relevance, hence the impacts of availability bias—intentional or unintentional selective 

sampling of studies that are easily accessible to samplers 16,17—on overall mean effect sizes may be observed. 

In this paper, we use as a measure of availability bias whether or not studies are indexed in certain 

bibliographic platform(s) (i.e., search sources). Note bias and random error cannot often be distinguished, thus 

we assess the risk of availability bias rather than testing presence or absence of availability bias (see 18 for the 

concept of “risk of bias”). To date, no studies assessed the impacts of search sources on environmental meta-

analytical estimates. 19 Since the number of environmental meta-analyses are increasing rapidly 7,20, and are 

increasingly used to inform policy and practice, the assessment of risk of bias in search sources is a critical 

element of review conduct. The Collaboration for Environmental Evidence (CEE; 

www.environmentalevidence.org), an independent organization that provides guidelines and standards for 

environmental evidence synthesis, has long been advocating the conduct of searches that are not solely 

dependent on bibliographic platforms. 6 However, despite the formal establishment and development of 

environmental evidence synthesis methodology 6,21, the importance of such comprehensiveness of search 

strategy remains underappreciated by the scientific community of the environmental sector 14,15,22, presumably 
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because including such comprehensive search requires more resources and time 23, and/or to date there is no 

empirical evidence that such comprehensiveness of literature search matters to outcomes of environmental 

evidence syntheses. 

Here we evaluate impacts of searches restricted to widely used bibliographic platform(s) on outcomes of 

meta-analyses, and assess the risk of availability bias by using published meta-analyses that are based on 

multiple source searches and comparing overall mean effect sizes between: (i) studies indexed in one single 

platform (WoS) and all studies included in published meta-analyses using both unweighted meta-analysis 

(“unweighted single-platform search group” hereon) and weighted meta-analysis (“weighted single-platform 

search group” hereon); (ii) studies indexed in multiple platforms (WoS and six other platforms; see below) 

and all studies included in published meta-analyses using both unweighted meta-analysis (“unweighted 

multiple-platform search group” hereon) and weighted meta-analysis (“weighted multiple-platform search 

group” hereon). We also analyse the effect of proportions of studies missed by the single-platform search and 

the multiple-platform search on the deviations of overall mean effect sizes for investigating the pattern across 

the meta-analyses in all the four comparison groups. We then compare empirical models (based on our 

observations of whether studies are indexed or not) and simulation models (random sampling of studies) to 

assess whether random sampling of studies reduce deviations of mean effect sizes across the meta-analyses. 

Furthermore, we directly compare mean effect sizes between studies that are indexed in the platform(s) 

(“indexed” hereon) and those not indexed (“non-indexed” hereon) to assess the risk of availability bias for 

individual meta-analyses. Finally, we provide guidance on search strategy development for reducing the risk 

of bias. 
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2. METHODS 

2.1 Overview 

An overview of the workflow of this study is provided in Figure 2. We first conducted searches for published 

meta-analyses that were based on multiple source searches (Section 2.2) followed by eligibility screening 

(Section 2.3), and checking study index status (in which sources studies are indexed) for both single-platform 

search and multiple-platform search groups and study sources (Section 2.4). We then quantified effect size 

differences due to the exclusion of studies that were not indexed in the bibliographic platform(s) (Section 

2.5). Further, we assessed relationships between effect size differences and proportions of studies missed by 

the restricted searches to explore the pattern across the meta-analyses, followed by simulation modelling and 

subgroup analyses that tested whether the existence of studies from grey literature and unpublished data in the 

original datasets had an effect on the differences in mean effect sizes (Section 2.6). The simulation models 

were to assess the effect of randomization of primary studies on deviations of mean effect sizes across the 

meta-analyses. The subgroup analyses were conducted because we hypothesized that original meta-analyses 

that involved grey literature and unpublished data would be more affected (i.e., result in larger deviations of 

effect sizes) by the restricted searches compared to those that involved commercially published articles only, 

even when the proportion of studies missed was taken into account. To assess the risk of bias for each 

individual meta-analysis, we directly compared mean effect sizes between indexed and non-indexed studies 

for each of the unweighted search groups (Section 2.7). 

2.2. Searches for meta-analyses 

We conducted searches in Web of Science Core Collection (“WoSCC” hereon), Scopus (www.scopus.com), 

CAB Direct (www.cabdirect.org) and used two search engines: Bielefeld Academic Search Engine (“BASE”; 

www.base-search.net); and Google Scholar via Publish or Perish version 6 (harzing.com/resources/publish-or-

perish) to collect potentially relevant meta-analytical articles published between 2014 and 2018 (see S1 for 
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detailed search strategy and results). The search results from WoSCC were imported into EndNote Basic 

(endnote.com/product-details/basic), and then the records were converted into RIS files for importing to 

CADIMA (www.cadima.info). 24 The search results from Scopus, CAB Direct, BASE and Google Scholar 

were exported as RIS files for importing to CADIMA. We restricted the year in order to assess up-to-date 

meta-analyses as environmental evidence synthesis methodology is being rapidly developed 6 and the first 

textbook of meta-analysis in the environmental field was published in 2013. 5 

2.3. Eligibility screening 

We ran the automatic duplicate removal function (based on title) in CADIMA. We then applied the same 

eligibility criteria as O’Leary et al. 2016 14 that states: (i) “reviews should be undertaken in relation to a 

specific question or topic of relevance to environmental management and have recommendations for policy or 

practice”; and (ii) “article type should be a review and/or synthesis of primary research”. We also applied 

further eligibility criteria to collect only meta-analytical articles that used effect sizes and conducted multiple 

source searches: (iii) effect size—a meta-analysis must have used one of the following effect sizes: raw mean 

difference; standardised mean difference; response ratio; odds ratio; risk ratio; risk difference; or Fisher’s z 

transformed r; and (iv) search source—a meta-analysis must have been based on search of at least one 

bibliographic platform (WoS) and another source. Screening was conducted at two stages: title and abstract in 

CADIMA; and full text using a spreadsheet and collected PDFs. Unobtainable records and reasons for 

exclusion at full text were recorded. Meta-analytical articles were excluded where they did not provide 

analysable datasets (e.g., Microsoft Excel Workbook), which enable calculation of effect sizes or contain 

effect sizes, as supplementary materials or in tables or appendixes. Unconfigurable or unclear datasets were 

excluded. This procedure of identifying datasets divided papers into meta-analysis level since one paper may 

produce more than one mean effect sizes to address multiple populations, interventions/exposures and/or 

outcomes questions that are common in the environmental sector. To ensure that we do not count the same 

primary studies twice in each meta-analysis, we used data for aggregation of all studies when overall mean 
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effect size was presented, and the data were openly accessible. In cases where overall mean effect size was not 

presented or data only for subgroup analysis were available, we used the data for subgroup analyses (e.g., 

taxonomic groups that were deemed unsuitable for aggregation in the original papers). 

2.4. Checking study index status and sources 

We checked whether studies in the analysable datasets providing sufficient information were indexed in one 

single platform: WoS (with a default setting of WoSCC database) and in multiple platforms: WoS (All 

Databases option which includes WoSCC); CAB Direct (CAB ABSTRACTS, Global Health and CABI Full 

Text); ProQuest (Core Databases; search.proquest.com); ScienceDirect (www.sciencedirect.com); Wiley 

Online Library (onlinelibrary.wiley.com); JSTOR (www.jstor.org); and BioOne COMPLETE (bioone.org) via 

Bangor University institutional access (see details in S2). WoS was chosen as the single-platform search 

because it is the most commonly searched platform in environmental evidence reviews; the other six platforms 

were chosen as they are also commonly searched in environmental evidence reviews. Records’ titles and/or 

Digital Object Identifiers (DOIs) were used to check the index status of each study in the platforms. Where 

studies were indexed in a platforms, we treated them as retrieved by searches of that platform because our 

interest was not the performance of search strategies actually used, rather the risk of sole reliance on studies 

that were indexed in the platforms (hence findable). 19 This approach was chosen because applying the 

original search strings might miss studies indexed in the platforms. 19 To enable subgroup analyses, we also 

checked study sources and classified those into: (i) commercially published article; and (ii) grey literature and 

unpublished data by applying the Luxembourg definition of grey literature: “manifold document types 

produced on all levels of government, academics, business and industry in print and electronic formats that are 

protected by intellectual property rights, of sufficient quality to be collected and preserved by libraries and 

institutional repositories, but not controlled by commercial publishers”. 25 For those studies that had already 

been classified as unpublished, thesis, dissertation, conference proceedings, organizational or government 

report or equivalent in the datasets for meta-analyses, we simply classified as: grey literature and unpublished 
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data. For those studies not indexed in the platforms or not listed as commercially published articles, we 

searched for the study sources using Google Scholar (scholar.google.co.uk), Google (www.google.co.uk) and 

ResearchGate (www.researchgate.net). We then classified each eligible meta-analysis (i.e., each dataset for 

producing a mean effect size) into two subgroups: (i) original datasets containing studies from commercially 

published articles only (“commercially published only subgroup” hereon; Figure 2); and (ii) original datasets 

containing studies from grey literature and unpublished data (“grey involved subgroup” hereon; Figure 2). 

2.5. Meta-analyses 

We calculated effect sizes and their variances where datasets did not contain effect sizes but did contain 

sufficient information such as means, standard deviations and sample sizes for both groups: comparator and 

treatment. We chose the same effect size metrics as the original meta-analyses, for example, where log 

response ratios were used, we calculated log response ratios. 26 We otherwise used the effect sizes provided in 

the original datasets. To investigate weighted effect sizes, we standardized the methods of weighting by 

focusing on inverse of variance as our interest was not to conclude or infer effects, rather to investigate 

deviations of mean effect sizes by treating all meta-analyses equally. 27 Where original meta-analyses were 

conducted under a fixed effect model, we weighted by inverse of within-study variance, and where meta-

analyses were conducted under random or mixed-effects model, we weighted by inverse of within- and 

between-study variances (i.e., pooled variance) under a random effects model 27; we did not conduct meta-

analyses under mixed-effects models as our interest was not to examine interaction of assessed intervention or 

exposure and other factors. We did not conduct weighting where original meta-analyses did not weight 

studies, or datasets did not provide sufficient information. All meta-analyses were performed using the 

metafor package 28 in R version 3.5.0. 29 
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2.6. Effect of proportion of studies missed on effect size differences 

For each eligible meta-analysis (i.e., each dataset for producing a mean effect size) we calculated overall mean 

effect size differences between: (i) studies indexed in the single platform and all studies included in the 

original meta-analysis (the unweighted and weighted single-platform search groups); and (ii) studies indexed 

in the multiple platforms and all studies included in the original meta-analysis (the unweighted and weighted 

multiple-platform search groups) by subtracting overall mean effect size of studies indexed in the platform(s) 

from overall mean effect size of all studies included in the original meta-analyses. Effect size differences can 

occur in both positive and negative directions and so where effect size differences were negative, we 

transformed those to positive values, and then log-transformed all the values for obtaining a log-normal 

distribution 30; we did not convert any effect size metrics as there were different meanings and assumptions in 

each metric of effect size. 27 We then calculated a proportion (%) of studies missed by the single-platform 

search and the multiple-platform search separately for each meta-analysis by dividing the number of studies 

missed by the number of all studies included in the original meta-analysis. The proportions of studies missed 

were then log-transformed to be log-normally distributed. We then fitted a log-linear regression model for 

each group: (i) unweighted single-platform search group; (ii) weighted single-platform search group; (iii) 

unweighted multiple-platform search group; and (iv) weighted multiple-platform search group, with log (Δ 

mean effect size) as a response variable and the log (proportion of studies missed, %) as an explanatory 

variable. We also developed simulation models based on randomly selected studies with the actual proportions 

of indexed studies for the unweighted single-platform search group and the unweighted multiple-platform 

search group. For example, when a single-platform search missed 20% of the studies included in an original 

meta-analysis, we randomly sampled 80% of the studies. We replicated the randomized sampling of studies 

1000 times for each meta-analysis (i.e., number of meta-analyses × 1000 runs for each of the unweighted 

single-platform search group (98000 runs) and the unweighted multiple-platform search group (78000 runs)). 

We calculated a mean of the 1000 replicates for each meta-analysis. We then calculated mean effect size 
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differences (as positive values), and then log-transformed the effect size differences as described above. These 

simulations of randomized sampling of studies were to compare slopes (effect sizes, b) and the intercepts (c) 

against the empirical models (i.e., actual observations; described above). We tested for statistical significance 

by comparing the empirical and simulation models. Further, we conducted a subgroup analysis for each group 

(excluding the simulation models) that compared two log-linear models with and without a binomial fixed 

factor: subgroup (the existence of grey literature and unpublished data in the original datasets; categorization 

described above; Figure 2) to test whether the factor had an influence on the differences in mean effect sizes. 

To statistically test significance of a potential confounding factor: effect size metrics, we added the fixed 

factor to the above full log-linear models (i.e., log (Δ mean effect size) ~ log (proportion of studies missed, %) 

+ subgroup + effect size metrics) and compared to reduced models (without the fixed factor: effect size 

metrics). Statistical tests were conducted in R version 3.5.0. 29 

2.7. Differences in mean effect sizes between indexed and non-indexed studies 

In order to avoid statistical results to be correlated between meta-analyses provided in a same paper (non-

independent), we selected one meta-analysis from each article that enabled the most potentially meaningful 

comparison of unweighted-mean effect sizes between indexed and non-indexed studies. For each paper, we 

selected one that obtained the largest sample size in the lower sample size groups (e.g., 10 vs 10 would be 

preferred over 100 vs 5). Where lower sample size groups provided the same sample size, we selected the one 

that obtained the largest total sample size (e.g., 100 vs 10 would be preferred over 10 vs 10). We then 

compared unweighted-mean effect sizes between indexed and non-indexed studies using Welch two-sample t-

test for both the unweighted single-platform and the unweighted multiple-platform search groups. 31 As 

sensitivity analyses, we fitted a log-linear regression model described above (without subgroup analyses) 

using these subsets of meta-analyses for both the unweighted single-platform search group and the 

unweighted multiple-platform search group. We further compared the simulation and the empirical models for 
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these subsets of meta-analyses using the same methods described above, and then tested for statistical 

significance. 

3. RESULTS 

3.1. Description of dataset 

30 articles from 22 journals out of 28139 unique records retrieved by the searches for meta-analyses met all 

the eligibility criteria (flow diagram: S3; list of eligible articles: S4; list of articles excluded at full text and 

unobtainable records: S5), resulting in 137 eligible meta-analyses (i.e., 137 overall mean effect sizes without  

duplication of primary studies between meta-analyses presented in the 30 articles 28–57, hence retaining 

independence of individual effect sizes). These 30 eligible meta-analytical articles conducted diverse searches 

in addition to the single-platform search in WoS (Figure 3). The most frequently used platform after WoS 

was Scopus followed by China Knowledge Resource Integrated Database (CNKI), ProQuest, ScienceDirect, 

BioOne, CAB Direct, Chinese Academy of Sciences (CAS), CiNii, Directory of Open Access Journals 

(DOAJ), EBSCOhost, GeoRef, JSTOR, and Ovid. The most frequently applied supplementary searches were 

Google Scholar and reference searching (also known as snowballing) followed by personal contact, Google, 

specialist website, and university library. These 137 meta-analyses involved 9388 primary studies (number of 

studies per meta-analysis: median = 23; minimum = 2; maximum = 1490): 8095 studies from commercially 

published articles; and 1293 studies from grey literature and unpublished data. Effect sizes used in the 137 

meta-analyses were: log response ratio; Hedges’ d; non-log response ratio; Fisher’s z transformed r; log risk 

ratio; and log odds ratio (Figure 4). We also found that 62 of 78 meta-analytical articles excluded on the basis 

of limited search sources (i.e., those not conducting multiple source searches) used WoS only (79%), 

indicating that WoS only search was indeed commonly applied in the environmental sector (S5 & S6). 

The single-platform search (WoS) captured all studies in 37 meta-analyses but did not capture all studies in 

100 meta-analyses (Figure 5a). In two of the 137 meta-analyses, the single-platform search missed all studies, 
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and therefore 98 overall mean effect sizes could be compared between studies indexed in the single platform 

and all studies included in the original meta-analyses. Effect sizes used in the 98 meta-analyses were: log 

response ratio; Hedges’ d; non-log response ratio; Fisher’s z transformed r; log risk ratio; and log odds ratio 

(Figure 4). 66 of the 98 meta-analyses could be weighted (Figure 4). In total, 6305 studies were indexed in 

the single platform; these indexed studies were all from commercially published articles, and therefore all 

studies from grey literature and unpublished data were missed by the single-platform search (Figure 5c). 

The multiple-platform search captured all studies in 57 meta-analyses, that was 15% higher than the single-

platform search (Figure 5b). However, the multiple-platform search did not capture all studies in 80 meta-

analyses and missed all studies in two meta-analyses, and therefore 78 meta-analyses could be compared 

between studies indexed in the multiple platforms and all studies in the original meta-analyses. Effect sizes 

used in the 78 meta-analyses were: log response ratio; Hedges’ d; non-log response ratio; log risk ratio; log 

odds ratio; and Fisher’s z transformed r (Figure 4). 54 of the 78 meta-analyses could be weighted (Figure 4). 

In total, 6697 studies were indexed in the multiple platforms: 6668 studies from commercially published 

articles and 29 studies from grey literature and unpublished data (Figure 5c). The vast majority of studies 

from commercially published articles that were not indexed in the multiple platforms were those published in 

non-English-languages (99%; n = 1415). 

3.2. Impacts of the restricted searches on estimates and statistical significance 

Within our meta-analyses, as consequences of the single-platform search (WoS), 58 unweighted and 35 

weighted provided larger-effect estimates, and 32 unweighted and 27 weighted provided smaller-effect 

estimates (Figure 6; unweighted: S7 & weighted: S8). In eight unweighted and four weighted meta-analyses, 

the single-platform search even led to opposite direction of effects (Figure 6; unweighted: S7 & weighted: 

S8). There were 20 cases in which the single-platform search had impacts on statistical significance: nine 

unweighted and five weighted mean effect sizes became non-significant from significant; and two unweighted 

and four weighted mean effect sizes became significant from non-significant (Figure 6). 
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As consequences of the multiple-platform search, 47 unweighted and 28 weighted meta-analyses provided 

larger-effect estimates, and 28 unweighted and 22 weighted meta-analyses provided smaller-effect estimates 

(Figure 6; unweighted: S9 & weighted: S10). In four unweighted and three weighted meta-analyses, the 

multiple-platform search even led to opposite direction of effects (Figure 6; unweighted: S9 & weighted: 

S10). There were 13 cases that the multiple-platform search had impacts on statistical significance: three 

unweighted and four weighted mean effect sizes became non-significant from significant; and two unweighted 

and four weighted mean effect sizes became significant from non-significant (Figure 6). Overall, effect size 

differences were relatively greater for meta-analyses in which the proportions of studies missed were also 

relatively greater (see below). 

3.3. Effect of proportion of studies missed on effect size differences 

Log-linear regression models indicated that there were significant positive linear relationships between the 

proportions of studies missed and differences in mean effect sizes in all the four groups (Figure 7): (i) 

unweighted single-platform search group (F1, 96 = 35.36; p<0.001); (ii) weighted single-platform search group 

(F1, 64 = 27.09; p<0.001); (iii) unweighted multiple-platform search group (F1, 76 = 33.37; p<0.001); and (iv) 

weighted multiple-platform search group (F1, 52 = 27.51; p<0.001). Effect sizes (slopes, b) were larger in the 

single-platform search group than the multiple-platform search group (112% larger in the unweighted; 108% 

larger in the weighted). These log-linear relationships remained in the simulation models based on randomly 

selected studies for both the unweighted single-platform search group (F1, 96 = 15.19; p<0.001) and the 

unweighted multiple-platform search group (F1, 76 = 7.16; p<0.001). Their effect sizes (slopes, b) were smaller 

(b = 0.63 in the two simulation models) compared to the empirical models which provided 151% and 135% 

larger effect sizes (b), respectively (Figure 7; S11). Deviations of mean effect sizes were significantly greater 

in the empirical models compared to the simulation models, suggesting that restricting searches did not 

provide random samples of primary studies (Figure 7; S11). Further, subgroup analyses through model 

comparisons indicated that the grey involved subgroup had significantly larger overall effect size differences 
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than the commercially published only subgroup in all the four groups (Figure 7): (i) unweighted single-

platform search group (F = 7.42; p = 0.008); (ii) weighted single-platform search group (F = 12.22; p<0.001); 

(iii) unweighted multiple-platform search group (F = 11.60; p = 0.001); and (iv) weighted multiple-platform 

search group (F = 27.66; p<0.001). A potential confounding factor: effect size metrics did not have a 

significant influence on the outcomes of the subgroup analyses in all the four groups: (i) unweighted single-

platform search group (F = 1.71; p = 0.14); (ii) weighted single-platform search group (F = 0.91; p = 0.47); 

(iii) unweighted multiple-platform search group (F = 1.67; p = 0.15); and (iv) weighted multiple-platform 

search group (F = 1.14; p = 0.35). 

3.3. Differences in mean effect sizes between indexed and non-indexed studies 

For the single-platform search group, differences in unweighted-mean effect sizes between indexed and non-

indexed studies could be tested for 29 meta-analyses (from 29 articles). We found evidence of differences in 

unweighted-mean effect sizes for 10 (34.5%) meta-analyses (Figure 8; S12). For the multiple-platform search 

group, differences in unweighted-mean effect sizes could be tested for 20 meta-analyses (from 20 articles). 

We found evidence of differences in unweighted-mean effect sizes for seven (35%) meta-analyses (Figure 8; 

S12). The significant log-linear relationships (described above) remained in these subsets of meta-analyses 

(single-platform search group: F1, 27 = 27.2; p<0.001; multiple-platform search group: F1, 18 = 56.22; 

p<0.001). The unweighted single-platform search group provided 140% larger effect size (slope, b) compared 

to the unweighted multiple-platform search group (Figure 8). Further, in the simulation model for the 

unweighted single-platform search group, the significant relationship remained (F1, 27 = 5.70; p = 0.02). 

However, it did not remain for the unweighted multiple-platform search group (F1, 18 = 2.32; p = 0.15). Their 

effect sizes (slopes, b) were smaller compared to the empirical models that provided 244% and 134% larger 

effect sizes (b), respectively (Figure 8; S11). Statistically significant differences between the empirical and 

the simulation models remained for the both groups (single-platform search group: F = 27.2; p<0.001; 

multiple-platform search group: F = 56.22; p<0.001). 
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4. DISCUSSION 

We have demonstrated that the restricted search strategies using only the widely used bibliographic 

platform(s) could affect the estimates of overall mean effect sizes in environmental meta-analyses. A single-

platform search is especially risky with an estimation that 11% of meta-analyses could result in different 

statistical outcomes. The multiple-platform search could reduce the frequency of the adverse events by 4% 

although major influences could not be eliminated. Missing studies could affect not only the mean effect sizes 

and statistical significance, but also confidence intervals by narrowing or widening them. This seemingly 

depends on the missed studies’ characteristics; where studies with relatively unique characteristics are missed 

(e.g., studies on species that responded differently from the other species to given exposure), it might lead to 

narrower confidence intervals due to homogenization while studies with similar characteristics are missed 

(e.g., studies on the same species to given exposure), it might lead to wider confidence intervals due to 

reduced sample size (S7-S10). Although it is crude, we estimate that about 35% of meta-analyses have high 

risk of availability bias (i.e., mean effect sizes differ between indexed and non-indexed studies) when 

restricting searches to these widely used platform(s). These results imply that sole reliance on the widely used 

bibliographic platform(s) should be avoided to mitigate the risk of bias in search sources. 

We also showed that there were significant positive log-linear relationships between the proportions of studies 

missed and the deviations of mean effect sizes. This suggests that as the number of studies missed increases, 

deviation of mean effect size is likely to expand. We revealed that slopes (effect sizes, b) were steeper where 

the single-platform search was conducted compared to the multiple-platform search, as well as to the 

simulation model (Figure 7-8; S11). One possible explanation for this is that studies retrieved by relatively 

comprehensive searches or random sampling better represent the true population of relevance compared to 

studies retrieved by the single-platform search. However, even the multiple-platform search missed a large 

proportion of studies from grey literature and unpublished data (98% of known studies from grey literature 

and unpublished data were missed), as well as from non-English-language publications (99% of missed 
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studies from commercially published articles were those published in non-English-languages). The missing of 

non-English-language publications may be explained by revealed underrepresentation of non-English-

language literature in widely used bibliographic platforms. 13 Thus, both the single-platform and the multiple-

platform searches are unlikely to lead to random samples of primary studies. Further, the grey involved 

subgroup (original meta-analyses that involved grey literature and unpublished data) resulted in significantly 

larger deviations of mean effect sizes than the commercially published only subgroup (original meta-analyses 

that involved commercially published articles only). This seems to be an effect of publication bias 16,62; 

missing studies from grey literature and unpublished data (the aforementioned 98%), on average, may have a 

stronger impact on meta-analytical estimates than missing studies from commercially published articles that 

are not indexed due to a systematic difference in reported effects between the two types of study source 

(Figure 7). 

Given the demonstrated risk of bias in search sources, policy and practice decision-makers should be informed 

by reliable evidence reviews that are based on comprehensive literature searches including sources beyond the 

widely used bibliographic platforms. Shockingly, such practice is currently not common in environmental 

evidence reviews as we found that 229 (77%) of 298 excluded meta-analytical articles published between 

2014 and 2018 did not report their search strategies or search multiple platforms and conduct supplementary 

searches (S6). These findings support earlier recommendations that comprehensiveness, transparency, and 

repeatability of search strategies need to be improved 14,15 as biased review outcomes might trigger ineffective 

or even harmful policy and practice. 63 Our findings are an indication that authors, editors and peer-reviewers 

need to take greater account of risk of bias in search strategies as a whole (including the performance of 

search strings) when producing environmental evidence reviews. In fact, restricting search strategy has 

already been cautioned against by organizations such as CEE and the Department for Environment, Food & 

Rural Affairs of the UK government—even in rapid evidence assessment—acknowledging the risk of bias. 6,64 

Thanks to the formal establishment of systematic evidence assessment methodology, existing CEE evidence 
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syntheses and government rapid evidence assessments usually meet the standards of searching additional 

sources of information and contacting external experts (e.g., 65,66). Our findings imply a need for formal 

training in developing search strategies for evidence assessment to further advance evidence-based approaches 

in environmental management and conservation disciplines just as practiced in the health sector. 67–70 

To reduce the risk of bias in search strategies as a whole, evidence reviewers should formally assess the 

performance of their search strategy prior to the conduct of actual searches. 6,71 This can be done in three 

steps: (i) creating a test list of relevant study sources that preferably include both commercially published and 

grey literature; (ii) trying out a developed search strategy using bibliographic platforms and supplementary 

searches (e.g., web-based searches such as using Google Scholar 72,73); and (iii) checking whether the search 

strategy captures all relevant records in the test list. This type of assessment often requires formal training of 

searches 5, and therefore we recommend the CEE Guidelines and Standards for Evidence Synthesis in 

Environmental Management 6 and Livoreil et al. 2017 74 as the first-step detailed guidance on developing 

search strategy. Haddaway et al. 2018 developed ROSES, a set of reporting standards in the environmental 

sector, which may also help search strategy planning, documentation and reporting. 75 

This study has a few limitations. First, our inferences might depend on the methodology applied in the original 

meta-analyses as we used available data (i.e., coded information). We assumed that consideration was given to 

study independence (e.g., correlation between within-study effect sizes for multiple-treatment studies) prior to 

the original meta-analyses. 76,77 We also assumed that all primary studies were sufficiently valid although only 

two articles 32,33, that provided three meta-analyses, reported the conduct and results of critical appraisals; this 

might mean that the other collected datasets had already been biased, for example, due to selection bias, 

detection bias, performance bias, attrition bias that would occur within primary studies. 6,62 Second, we did not 

control for potential confounders other than effect size metrics. It is theoretically possible that there are 

associations between study characteristic factors and search sources (i.e., certain study characteristics are 

more likely to be indexed), and these better explain the deviations of effect sizes. However, it is likely that the 
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risk of availability bias will increase when there are associations (i.e., certain study characteristics are more 

likely to be retrieved). Also, even when there are associations, the assessed impacts on meta-analyses would 

not differ from the results because missed studies remain missed studies. Third, the level of access to 

databases differs between institutions. This means that studies classified as indexed in the single platform or 

the multiple platforms in this study may not be accessible from other institutions. Hence, the risk should differ 

according to the level of access. Also, we did not have full access, and therefore studies classified as not 

indexed in this study may be accessible from other institutional access (see S2 & S4 for our access level and 

dates checked). In order to conduct more comprehensive assessment of risk of bias in search sources, we need 

more complete reporting of search strategies. 

Our findings nevertheless suggest that environmental evidence reviewers should be cautious about availability 

bias. Conducting search strategies that use only widely used bibliographic platform(s) should preferably be 

avoided to reduce the risk of bias in search sources. 
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FIGURE 1. Conceptual model. Single-platform and multiple-platform searches may miss studies that are not 
indexed in the bibliographic platform(s). It is therefore expected if academic researchers rely only on these 

search sources, the estimates of mean effect sizes will be affected. 
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FIGURE 2. Overview of this study. Words in bold represent the subsections. “Single-platform search group” 
(green) uses Web of Science. “Multiple-platform search group” (orange) uses: Web of Science; CAB Direct; 
ProQuest; ScienceDirect; Wiley Online Library; JSTOR; and BioOne COMPLETE (Section 2.4). Where original 

meta-analyses include studies from grey literature and unpublished data, they are classified as “grey 
involved subgroup”. Others are classified as “commercially published only subgroup” (Section 2.4). 
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FIGURE 3. Frequency of searched platforms and supplementary searches reported in the eligible meta-
analytical articles (n = 30). 
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FIGURE 4. Frequency of effect size metrics used in the eligible meta-analyses (all dataset; n = 137), and 
those that are comparable within groups: unweighted single-platform search group (n = 98); weighted 
single-platform search group (n = 66); unweighted multiple-platform search group (n = 78); weighted 

multiple-platform search group (n = 54). 
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FIGURE 5. Proportions of meta-analyses in which all studies were indexed in: (a) the single platform; and 
(b) the multiple platforms. Values in brackets show the number of meta-analyses. (c) Proportions of studies 
indexed in the single platform and the multiple platforms. Values represent the number of indexed primary 

studies. 
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(b) the multiple platforms. Values in brackets show the number of meta-analyses. (c) Proportions of studies 
indexed in the single platform and the multiple platforms. Values represent the number of indexed primary 
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FIGURE 5. Proportions of meta-analyses in which all studies were indexed in: (a) the single platform; and 
(b) the multiple platforms. Values in brackets show the number of meta-analyses. (c) Proportions of studies 
indexed in the single platform and the multiple platforms. Values represent the number of indexed primary 

studies. 
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FIGURE 6. Consequences of the single-platform search (left): 137 unweighted meta-analyses and 68 
weighted meta-analyses; and the multiple-platform search (right): 137 unweighted meta-analyses and 54 

weighted meta-analyses. Weighting were conducted for meta-analyses in which the searches did not capture 
all studies. 
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FIGURE 7. Relationships between proportions of studies missed and differences in mean effect sizes using all 
comparable meta-analyses. Top left: unweighted single-platform search group (n = 98). Middle left: 

weighted single-platform search group (n = 66). Bottom left: unweighted single-platform search group (n = 
98) compared to the simulation model (randomized sampling of studies). Top right: unweighted multiple-
platform search group (n = 78). Middle right: weighted multiple-platform search group (n = 54). Bottom 

right: unweighted multiple-platform search group (n = 78) compared to the simulation model (randomized 
sampling of studies). The black lines represent the best fits of all data. Dotted parts of the lines are beyond 

the log-linear models. 
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FIGURE 8. Relationships between proportions of studies missed and differences in mean effect sizes using 
subsets of meta-analyses. Top left: unweighted single-platform search group (n = 29). Bottom left: 

unweighted single-platform search group (n = 29) compared to the simulation model (randomized sampling 
of studies). Top right: unweighted multiple-platform search group (n = 20). Bottom right: unweighted 
multiple-platform search group (n = 20) compared to the simulation model (randomized sampling of 
studies). The lines represent the best fits. Dotted parts of the lines are beyond the log-linear models. 
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