700 research outputs found

    Finite-size effects in dynamics of zero-range processes

    Full text link
    The finite-size effects prominent in zero-range processes exhibiting a condensation transition are studied by using continuous-time Monte Carlo simulations. We observe that, well above the thermodynamic critical point, both static and dynamic properties display fluid-like behavior up to a density {\rho}c (L), which is the finite-size counterpart of the critical density {\rho}c = {\rho}c (L \rightarrow \infty). We determine this density from the cross-over behavior of the average size of the largest cluster. We then show that several dynamical characteristics undergo a qualitative change at this density. In particular, the size distribution of the largest cluster at the moment of relocation, the persistence properties of the largest cluster and correlations in its motion are studied.Comment: http://pre.aps.org/abstract/PRE/v82/i3/e03111

    A study of omega bands and Ps6 pulsations on the ground, at low altitude and at geostationary orbit

    Get PDF
    We investigate the electrodynamic coupling between auroral omega bands and the inner magnetosphere. The goal of this study is to determine the features to which omega bands map in the magnetosphere. To establish the auroral-magnetosphere connection, we appeal to the case study analysis of the data rich event of September 26, 1989. At 6 magnetic local time (MLT), two trains of Ps6 pulsations (ground magnetic signatures of omega bands) were observed to drift over the Canadian Auroral Network For the OPEN Program Unified Study (CANOPUS) chain. At the same time periodic ionospheric flow patterns moved through the collocated Bistatic Auroral Radar System (BARS) field of view. Similar coincident magnetic variations were observed by GOES 6, GOES 7 and SCATHA, all of which had magnetic foot points near the CANOPUS/BARS stations. SCATHA, which was located at 6 MLT, 0.5 RE earthward of GOES 7 observed the 10 min period pulsations, whereas GOES 7 did not. In addition, DMSP F6 and F8 were over-flying the region and observed characteristic precipitation and flow signatures. From this fortunate constellation of ground and space observations, we conclude that auroral omega bands are the electrodynamic signature of a corrugated current sheet (or some similar spatially localized magnetic structure) in the near-Earth geostationary magnetosphere

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    On the characterization of magnetic reconnection in global MHD simulations

    Get PDF
    The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency

    The magnetotail reconnection region in a global MHD simulation

    No full text
    International audienceThis work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs

    Differences in branch characteristics of Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing

    Get PDF
    • We studied the differences in branch characteristics along the stems of six different genetic entries of 20 year old Scots pines (Pinus sylvestris L.) grown at different spacing (current stand density range 2000–4000 trees ha−1) in central Finland. Furthermore, we studied the phenotypic correlations between yield, wood density traits and branch characteristics. All the genetic entries had Kanerva pine (plus tree S1101) as a father tree, whereas the mother tree represented Finnish plus trees from southern, central and northern Finland. • Spacing affected all yield traits, wood density and living branch characteristics such as relative average branch diameter and relative cumulative branch area (p < 0.05). As a comparison, genetic entry affected height, while origin group (southern, central and northern ones) affected most of the studied traits. Regardless of spacing, the northern origin had, on average, the largest stem diameter and highest wood density, while the central one was the tallest one. Furthermore, average branch diameter along the stem was affected by branch age, origin group and spacing, while average branch angle was affected by branch age and genetic entry (p < 0.05). • In general the average branch size could be decreased especially in lower tree canopy by denser spacing during the early phase of the rotation, but only at the expense of tree growth. Correspondingly differences between origins are mainly related to their differences in stem growth

    The rights of the child: are we creating a world in which all children are enabled to reach their full potential?

    Get PDF
    This chapter, through the lens of the UN Convention on the Rights of the Child, reviews whether we are actually creating world in which children’s development needs are recognized and met. The principle focus of the chapter is each child’s right to an education. In particular Articles 28 and 29 of the UNCRC are highlighted to provide a benchmark against which to consider education provision in multiple international contexts. Reference is made to the UN Millennium Declaration, the eight Millennium Development Goals and the UNICEF report “The State of the World’s Children 2016: A fair chance for every child” to enable examination of how a world fit for children is being achieved or not. From examination of the aforementioned reports, three imperatives emerge: economic, education and moral. These imperatives challenge the reader to consider how legislation and policy works towards or hinders the goal of creating a world in which all children are enabled to reach their full potential
    • …
    corecore