The finite-size effects prominent in zero-range processes exhibiting a
condensation transition are studied by using continuous-time Monte Carlo
simulations. We observe that, well above the thermodynamic critical point, both
static and dynamic properties display fluid-like behavior up to a density
{\rho}c (L), which is the finite-size counterpart of the critical density
{\rho}c = {\rho}c (L \rightarrow \infty). We determine this density from the
cross-over behavior of the average size of the largest cluster. We then show
that several dynamical characteristics undergo a qualitative change at this
density. In particular, the size distribution of the largest cluster at the
moment of relocation, the persistence properties of the largest cluster and
correlations in its motion are studied.Comment: http://pre.aps.org/abstract/PRE/v82/i3/e03111