231 research outputs found
The first prior: From co-embodiment to co-homeostasis in early life
The idea that our perceptions in the here and now are influenced by prior events and experiences has recently received substantial support and attention from the proponents of the Predictive Processing (PP) and Active Inference framework in philosophy and computational neuroscience. In this paper we look at how perceptual experiences get off the ground from the outset, in utero. One basic yet overlooked aspect of current PP approaches is that human organisms first develop within another human body. Crucially, while not all humans will have the experience of being pregnant or carrying a baby, the experience of being carried and growing within another person's body is universal. Specifically, we focus on the development of minimal selfhood in utero as a process co-embodiment and co-homeostasis, and highlight their close relationship. We conclude with some implications on several critical questions fuelling current debates on the nature of conscious experiences, minimal self and social cognition
Synchronization analysis of the uterine magnetic activity during contractions
BACKGROUND: Our objective was to quantify and compare the extent of synchronization of the spatial-temporal myometrial activity over the human uterus before and during a contraction using transabdominal magnetomyographic (MMG) recordings. Synchronization can be an important indicator for the quantification of uterine contractions. METHODS: The spatialtermporal myometrial activity recordings were performed using a 151-channel noninvasive magnetic sensor system called SARA. This device covers the entire pregnant abdomen and records the magnetic field corresponding to the electrical activity generated in the uterine myometrium. The data was collected at 250 samples/sec and was resampled with 25 samples/sec and then filtered in the band of 0.1–0.2 Hz to study the primary magnetic activity of the uterus related to contractions. The synchronization between a channel pair was computed. It was inferred from a statistical tendency to maintain a nearly constant phase difference over a given period of time even though the analytic phase of each channel may change markedly during that time frame. The analytic phase was computed after taking Hilbert transform of the magnetic field data. The process was applied on the pairs of magnetic field traces (240 sec length) with a stepping window of 20 sec duration which is long enough to cover two cycle of the lowest frequency of interest (0.1 Hz). The analysis was repeated by stepping the window at 10 sec intervals. The spatial patterns of the synchronization indices covering the anterior transabdominal area were computed. For this, regional coil-pairs were used. For a given coil, the coil pairs were constructed with the surrounding six coils. The synchronization indices were computed for each coil pair, averaged over the 21 coil-pairs and then assigned as the synchronization index to that particular coil. This procedure was tested on six pregnant subjects at the gestational age between 29 and 40 weeks admitted to the hospital for contractions. The RMS magnetic field for each coil was also computed. RESULTS: The results show that the spatial patterns of the synchronization indices change and follow the periodic pattern of the uterine contraction cycle. Spatial patterns of synchronization indices and the RMS magnetic fields show similarities in few window frames and also show large differences in few other windows. For six subjects, the average synchronization indices were: 0.346 ± 0.068 for the quiescent baseline period and 0.545 ± 0.022 at the peak of the contraction. DISCUSSION: These results show that synchronization indices and their spatial distributions depict uterine contractions and relaxations
The determinants of food choice
Health nudge interventions to steer people into healthier lifestyles are increasingly applied by governments worldwide, and it is natural to look to such approaches to improve health by altering what people choose to eat. However, to produce policy recommendations that are likely to be effective, we need to be able to make valid predictions about the consequences of proposed interventions, and for this, we need a better understanding of the determinants of food choice. These determinants include dietary components (e.g. highly palatable foods and alcohol), but also diverse cultural and social pressures, cognitive-affective factors (perceived stress, health attitude, anxiety and depression), and familial, genetic and epigenetic influences on personality characteristics. In addition, our choices are influenced by an array of physiological mechanisms, including signals to the brain from the gastrointestinal tract and adipose tissue, which affect not only our hunger and satiety but also our motivation to eat particular nutrients, and the reward we experience from eating. Thus, to develop the evidence base necessary for effective policies, we need to build bridges across different levels of knowledge and understanding. This requires experimental models that can fill in the gaps in our understanding that are needed to inform policy, translational models that connect mechanistic understanding from laboratory studies to the real life human condition, and formal models that encapsulate scientific knowledge from diverse disciplines, and which embed understanding in a way that enables policy-relevant predictions to be made. Here we review recent developments in these areas.</p
Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms
Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems
The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition
BACKGROUND: Neuroimaging and neuropsychological literature show functional dissociations in brain activity during processing of stimuli belonging to different semantic categories (e.g., animals, tools, faces, places), but little information is available about the time course of object perceptual categorization. The aim of the study was to provide information about the timing of processing stimuli from different semantic domains, without using verbal or naming paradigms, in order to observe the emergence of non-linguistic conceptual knowledge in the ventral stream visual pathway. Event related potentials (ERPs) were recorded in 18 healthy right-handed individuals as they performed a perceptual categorization task on 672 pairs of images of animals and man-made objects (i.e., artifacts). RESULTS: Behavioral responses to animal stimuli were ~50 ms faster and more accurate than those to artifacts. At early processing stages (120–180 ms) the right occipital-temporal cortex was more activated in response to animals than to artifacts as indexed by posterior N1 response, while frontal/central N1 (130–160) showed the opposite pattern. In the next processing stage (200–260) the response was stronger to artifacts and usable items at anterior temporal sites. The P300 component was smaller, and the central/parietal N400 component was larger to artifacts than to animals. CONCLUSION: The effect of animal and artifact categorization emerged at ~150 ms over the right occipital-temporal area as a stronger response of the ventral stream to animate, homomorphic, entities with faces and legs. The larger frontal/central N1 and the subsequent temporal activation for inanimate objects might reflect the prevalence of a functional rather than perceptual representation of manipulable tools compared to animals. Late ERP effects might reflect semantic integration and cognitive updating processes. Overall, the data are compatible with a modality-specific semantic memory account, in which sensory and action-related semantic features are represented in modality-specific brain areas
Comparative cellular analysis of motor cortex in human, marmoset and mouse
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations
A multimodal cell census and atlas of the mammalian primary motor cortex
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
Basic connectivity of the cerebral cortex and some considerations on the corpus callosum
Studies on the connectivity of the cerebral cortex have lent strong support to the idea that the cortex is an associative network in which information is stored by way of Hebbian cell assemblies. One of the main arguments for this is the elaborated system of cortico-cortical long-range connections which allows distant regions of the cortex to interact. Part of this system is the corpus callosum, which is responsible for the co-operation of the two cortical hemispheres. The following points are interesting with regard to interhemispheric co- operation: (1) the callosal system includes fewer neurons than the system of intrahemispheric long-range connections; (2) the mirror image activity induced by the callosal system may be advantageous for the ignition of cell assemblies; (3) the fibres of the corpus callosum differ considerably in thickness, which may be considered as anatomical evidence for more direct co-operation of the two hemispheres in some tasks rather than in others; and (4) a complex relationship between brain size and fibre thickness becomes evident in the corpus callosum, in which only some fibres seem to compensate for the longer conduction times in larger brains. Copyright (C) 1996 Elsevier Science Ltd
- …