270 research outputs found

    Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining

    Get PDF
    The tumor suppressor gene BRCA1 maintains genomic integrity by protecting cells from the deleterious effects of DNA double-strand breaks (DSBs). Through its interactions with the checkpoint kinase 2 (Chk2) kinase and Rad51, BRCA1 promotes homologous recombination, which is typically an error-free repair process. In addition, accumulating evidence implicates BRCA1 in the regulation of nonhomologous end-joining (NHEJ), which may involve precise religation of the DSB ends if they are compatible (i.e., error-free repair) or sequence alteration upon rejoining (i.e., error-prone or mutagenic repair). However, the precise role of BRCA1 in regulating these different subtypes of NHEJ is not clear. We provide here the genetic and biochemical evidence to show that BRCA1 promotes error-free rejoining of DSBs in human breast carcinoma cells while suppressing microhomology-mediated error-prone end-joining and restricting sequence deletion at the break junction during repair. The repair spectrum in BRCA1-deficient cells was characterized by an increase in the formation of >2 kb deletions and in the usage of long microhomologies distal to the break site, compared with wild-type (WT) cells. This error-prone repair phenotype could also be revealed by disruption of the Chk2 phosphorylation site of BRCA1, or by expression of a dominant-negative kinase-dead Chk2 mutant in cells with WT BRCA1. We suggest that the differential control of NHEJ subprocesses by BRCA1, in concert with Chk2, reduces the mutagenic potential of NHEJ, thereby contributing to the prevention of familial breast cancers

    Spin Fluctuations and the Magnetic Phase Diagram of ZrZn2

    Full text link
    The magnetic properties of the weak itinerant ferromagnet ZrZn_2 are analyzed using Landau theory based on a comparison of density functional calculations and experimental data as a function of field and pressure. We find that the magnetic properties are strongly affected by the nearby quantum critical point, even at zero pressure; LDA calculations neglecting quantum critical spin fluctuations overestimate the magnetization by a factor of approximately three. Using renormalized Landau theory, we extract pressure dependence of the fluctuation amplitude. It appears that a simple scaling based on the fluctuation-dissipation theorem provides a good description of this pressure dependence.Comment: 4 revtex page

    Reciprocal effects of silicon supply and endophytes on silicon accumulation and Epichloë colonization in grasses

    Get PDF
    Cool season grasses associate asymptomatically with foliar Epichloë endophytic fungi in a symbiosis where Epichloë spp. protects the plant from a number of biotic and abiotic stresses. Furthermore, many grass species can accumulate large quantities of silicon (Si), which also alleviates a similar range of stresses. While Epichloë endophytes may improve uptake of minerals and nutrients, their impact on Si is largely unknown. Likewise, the effect of Si availability on Epichloë colonization remains untested. To assess the bidirectional relationship, we grew tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) hydroponically with or without Si. Grasses were associated with five different Epichloë endophyte strains [tall fescue: AR584 or wild type (WT); perennial ryegrass: AR37, AR1, or WT] or as Epichloë-free controls. Reciprocally beneficial effects were observed for tall fescue associations. Specifically, Epichloë presence increased Si concentration in the foliage of tall fescue by at least 31%, regardless of endophyte strain. In perennial ryegrass, an increase in foliar Si was observed only for plants associated with the AR37. Epichloë promotion of Si was (i) independent of responses in plant growth, and (ii) positively correlated with endophyte colonization, which lends support to an endophyte effect independent of their impacts on root growth. Moreover, Epichloë colonization in tall fescue increased by more than 60% in the presence of silicon; however, this was not observed in perennial ryegrass. The reciprocal benefits of Epichloë-endophytes and foliar Si accumulation reported here, especially for tall fescue, might further increase grass tolerance to stress

    A P53-Independent DNA Damage Response Suppresses Oncogenic Proliferation and Genome Instability

    Get PDF
    The Mre11-Rad50-Nbs1 complex is a DNA double-strand break sensor that mediates a tumor-suppressive DNA damage response (DDR) in cells undergoing oncogenic stress, yet the mechanisms underlying this effect are poorly understood. Using a genetically inducible primary mammary epithelial cell model, we demonstrate that Mre11 suppresses proliferation and DNA damage induced by diverse oncogenic drivers through a p53-independent mechanism. Breast tumorigenesis models engineered to express a hypomorphic Mre11 allele exhibit increased levels of oncogene-induced DNA damage, R-loop accumulation, and chromosomal instability with a characteristic copy number loss phenotype. Mre11 complex dysfunction is identified in a subset of human triple-negative breast cancers and is associated with increased sensitivity to DNA-damaging therapy and inhibitors of ataxia telangiectasia and Rad3 related (ATR) and poly (ADP-ribose) polymerase (PARP). Thus, deficiencies in the Mre11-dependent DDR drive proliferation and genome instability patterns in p53-deficient breast cancers and represent an opportunity for therapeutic exploitation

    On the nonlinear dynamics of topological solitons in DNA

    Full text link
    Dynamics of topological solitons describing open states in the DNA double helix are studied in the frameworks of the model which takes into account asymmetry of the helix. It is shown that three types of topological solitons can occur in the DNA double chain. Interaction between the solitons, their interactions with the chain inhomogeneities and stability of the solitons with respect to thermal oscillations are investigated.Comment: 16 pages, 16 figure

    An Atlas of Human Regulatory T Helper-like Cells Reveals Features of Th2-like Tregs that Support a Tumorigenic Environment

    Get PDF
    Regulatory T cells (Tregs) play a pivotal role in maintaining immunological tolerance, but they can also play a detrimental role by preventing antitumor responses. Here, we characterized T helper (Th)-like Treg subsets to further delineate their biological function and tissue distribution, focusing on their possible contribution to disease states. RNA sequencing and functional assays revealed that Th2-like Tregs displayed higher viability and autocrine interleukin-2 (IL-2)-mediated activation than other subsets. Th2-like Tregs were preferentially found in tissues rather than circulation and exhibited the highest migratory capacity toward chemokines enriched at tumor sites. These cellular responses led us to hypothesize that this subset could play a role in maintaining a tumorigenic environment. Concurrently, Th2-like Tregs were enriched specifically in malignant tissues from patients with melanoma and colorectal cancer compared to healthy tissue. Overall, our results suggest that Th2-like Tregs may contribute to a tumorigenic environment due to their increased cell survival, higher migratory capacity, and selective T-effector suppressive ability. Graphical Abstrac

    A systematic review of physical activity promotion strategies

    Get PDF
    This article was first published in:British Journal of Sports Medicine:1996:30:84-89We have reviewed randomised controlled trials of physical activity promotion to provide recent and reliable information on the effectiveness of physical activity promotion. Computerised databases and references of references were searched. Experts were contacted and asked for information about existing work. Studies assessed were randomised controlled trials of healthy, free living, adult subjects, where exercise behaviour was the dependent variable. Eleven trials were identified. No United Kingdom based studies were found. Interventions that encourage walking and do not require attendance at a facility are most likely to lead to sustainable increases in overall physical activity. Brisk walking has the greatest potential for increasing overall activity levels of a sedentary population and meeting current public health recommendations. The small number of trials limits the strength of any conclusions and highlights the need for more research

    The fate of carbon in a mature forest under carbon dioxide enrichment

    Get PDF
    Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de Planétologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe

    Identification of Production Chain Risk Factors for Slaughterhouse Condemnation of Broiler Chickens’

    Get PDF
    Slaughterhouse condemnation of broiler chickens results from identification of polymorphic pathological conditions during meat inspection from arrival and on theslaughter line. While conditions that result in condemnation are multifactorial, identification of factors that are common for a number of categories could be valuable for developing strategies to reduce total condemnation. This study aimed to identify those condemnation categories that were most common in batches of broiler chickens and to determine and compare associated risk factors. In the first step, retrospective meat inspection records for 55,918 broiler batches from one large broiler integrator for 2015-2017 were used for association rules analysis. Results identified a network of nine associated condemnation categories: whole carcass condemnation for ascites, abnormal colour, perihepatitis, cellulitis, hard breast, tumours and dead on arrival, and liver only and heart only most often associated with hepatitis and pericarditis, respectively. Whilst the longitudinal study collected data on 109 explanatory variables from broiler parental flocks to slaughterhouse characteristics between January 2015 and December 2017. Condemnation outcome data were obtained from meat inspection records for 539 broiler batches participating in the study. Parental flock-, rearing farm-, shed- and transport-level risk factors were assessed for each outcome using mixed-effects multivariable Poisson regression including shed and farm as random effects. A Poisson regression tree method was used as the first step to identify variables most relevant for analysis and comparison across the outcomes. No single production factor was associated with all nine of the condemnation outcomes investigated in this study, although some were shared across multiple outcomes: age of parental flock at time of lay, flock-level Campylobacter spp. frequency, broiler chick weight at seven days of age, weight at slaughter, type of broiler removal (i.e. thinning, final depopulation), catcher team, number of birds per transport crate, slaughterhouse shift number, and type of slaughterhouse line. Broiler chickens removed during final depopulation were at greatest risk of condemnation. Condemnation rates for cellulitis and tumours were found to be higher in broilers inspected by night shift at the slaughterhouse. Discovery of an apparent protective effect of a higher number of broilers per transport crate was unexpected. These findings provide information for the broiler industry on production chain factors that might be amenable to targeted intervention to improve future efforts for control of condemnation
    corecore