129 research outputs found
Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura
Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis
Observation and integrated Earth-system science: a roadmap for 2016–2025
This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space.
The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system.
The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system.
The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully.
Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future.
A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation
Assimilation of satellite observations of long-lived chemical species in global chemistry transport models
Use of data assimilation techniques such as optimal interpolation or the Kalman filter in global chemistry transport models (CTM) is becoming more common. However: owing to high computational requirements, it is often difficult to apply these techniques to multidimensional models containing extensive photochemical schemes. We present a sequential assimilation approach developed for use with general global chemistry transport models. It allows fast assimilation and mapping of satellite observations and provides estimates of analysis errors. The suggested data assimilation scheme evolved from the one described by Levelt ct nl. [1998]. It is a variant of the suboptimal Kalman filter and is based on ideas described by Menard ct nl. [2000] and Menard and Chang [2000]. One of the most important features of the developed scheme is its ability to routinely estimate variance of the analysis and to predict variance evolution in the model. The developed technique (or its variants) has been successfully interfaced with a number of different global models and used for assimilation of several types of measurements. including aerosol extinction ratios. Some of these experiments are described by Lamarque et al. [1999] and W. D. Collins et al. (Forecasting aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, submitted to Journal of Geophysical Research, 2000, hereinafter referred to as Collins et al., submitted manuscript, 2000). We illustrate the method using assimilation of ozone observations made by the Upper Atmosphere Research Satellite/Microwave Limb Sounder in the three-dimensional chemistry transport model ROSE [Research for Ozone in the Stratosphere and its Evolution; Rose and Brasseur, 1989]
Recommended from our members
Disproportionately large impacts of wildland-urban interface fire emissions on global air quality and human health.
Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model-the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire-caused annual premature deaths (APDs) to all fire-caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts
The High-Resolution Solar Reference Spectrum between 250 and 550 nm and its Application to Measurements with the Ozone Monitoring Instrument
Air quality impacts of COVID-19 lockdown measures detected from space using high spatial resolution observations of multiple trace gases from Sentinel-5P/TROPOMI
The aim of this paper is to highlight how TROPOspheric Monitoring Instrument (TROPOMI) trace gas data can best be used and interpreted to understand event-based impacts on air quality from regional to city scales around the globe. For this study, we present the observed changes in the atmospheric column amounts of five trace gases (NO2, SO2, CO, HCHO, and CHOCHO) detected by the Sentinel-5P TROPOMI instrument and driven by reductions in anthropogenic emissions due to COVID-19 lockdown measures in 2020. We report clear COVID-19-related decreases in TROPOMI NO2 column amounts on all continents. For megacities, reductions in column amounts of tropospheric NO2 range between 14 % and 63 %. For China and India, supported by NO2 observations, where the primary source of anthropogenic SO2 is coal-fired power generation, we were able to detect sector-specific emission changes using the SO2 data. For HCHO and CHOCHO, we consistently observe anthropogenic changes in 2-week-averaged column amounts over China and India during the early phases of the lockdown periods. That these variations over such a short timescale are detectable from space is due to the high resolution and improved sensitivity of the TROPOMI instrument. For CO, we observe a small reduction over China, which is in concert with the other trace gas reductions observed during lockdown; however, large interannual differences prevent firm conclusions from being drawn. The joint analysis of COVID-19-lockdown-driven reductions in satellite-observed trace gas column amounts using the latest operational and scientific retrieval techniques for five species concomitantly is unprecedented. However, the meteorologically and seasonally driven variability of the five trace gases does not allow for drawing fully quantitative conclusions on the reduction in anthropogenic emissions based on TROPOMI observations alone. We anticipate that in future the combined use of inverse modeling techniques with the high spatial resolution data from S5P/TROPOMI for all observed trace gases presented here will yield a significantly improved sector-specific, space-based analysis of the impact of COVID-19 lockdown measures as compared to other existing satellite observations. Such analyses will further enhance the scientific impact and societal relevance of the TROPOMI mission
The Imminent Data Desert : The Future of Stratospheric Monitoring in a Rapidly Changing World
The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) on SCISAT-1 and Microwave Limb Sounder (MLS) on NASA’s Aura satellite have contributed significantly to understanding the impacts of human activities on the stratospheric ozone layer. The two-decade-long data record from these instruments has allowed quantification of ozone depletion caused by human-released ozone-depleting substances, the effects of extreme natural events like major volcanic eruptions including Hunga in 2022, as well as events amplified by human-caused climate change such as wildfires that inject material into the stratosphere, as happened over Australia in early 2020. Both platforms are nearing the end of their operational lifetimes, and their decommissioning will cause a substantial gap in the measurement of critical atmospheric components, including water vapor, inorganic chlorine species, and tracers of stratospheric transport. This upcoming “data desert” poses significant challenges for monitoring the recovery of the ozone layer and assessing the effects on stratospheric composition of future extreme events, threats posed by increases in space debris from satellite burn-up, and the possible injection of stratospheric aerosol to mitigate global warming. The lack of confirmed future missions that can provide daily near-global profile measurements of stratospheric composition highlights the need for observational strategies to bridge this impending gap. This paper discusses the essential role of ACE-FTS and MLS in advancing our understanding of the stratosphere, the impact of data loss after the cessation of one or both instruments, and the urgency of developing strategies for mitigating the impact of these observational losses at a time marked by dramatic changes in the stratosphere due to human and natural factors
New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)
GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde).
Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)
- …
