330 research outputs found

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    Morphological and Structural Characterization of Cro2/Cr2o3 Films Grown by Laser-CVD

    Get PDF
    This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by photodissociation of Cr(CO)6 in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio of O2 to Cr(CO)6 and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm-2 and a partial pressure ratio about 1. PACS: 81.15.Fg, 81.15.Kk, 81.05.JeComment: 17 pages, 4 figure

    Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    Get PDF
    Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {\mu}m were measured for these films.Comment: 16 pages, 6 figures, accepted for publication in Thin Solid Film

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Last Glacial Period Cryptotephra Deposits in an Eastern North Atlantic Marine Sequence: Exploring Linkages to the Greenland Ice-Cores

    Get PDF
    The establishment of a tephra framework for the Greenland ice-cores spanning the last glacial period, particularly between 25 and 45 ka b2k, provides strong potential for precisely correlating other palaeoclimatic records to these key archives. Tephra-based synchronisation allows the relative timing of past climatic changes recorded within different depositional environments and potential causal mechanisms to be assessed. Recent studies of North Atlantic marine records have demonstrated the potential of tracing cryptotephra horizons in these sequences and the development of protocols now allows a careful assessment of the isochronous nature of such horizons. Here we report on tephrochronological investigations of a marine sequence retrieved from the Goban Spur, Eastern North Atlantic, covering ?25–60 ka b2k. Density and magnetic separation techniques and an assessment of potential transport and depositional mechanisms have identified three previously unknown isochronous tephra horizons along with deposits of the widespread North Atlantic Ash Zone II and Faroe Marine Ash Zone III. Correlations between the new horizons and the Greenland ice-core tephra framework are explored and despite no tie-lines being identified the key roles that high-resolution climatostratigraphy and shard-specific trace element analysis can play within the assessment of correlations is demonstrated. The previously unknown horizons are new additions to the overall North Atlantic tephra framework for the last glacial period and could be key horizons for future correlations

    Neurocognitive profiles in the prodrome to psychosis in NAPLS-1

    Get PDF
    Background: Most studies of neurocognitive functioning in Clinical High Risk (CHR) cohorts have examined group averages, likely concealing heterogeneous subgroups. We aimed to identify neurocognitive subgroups and to explore associated outcomes. Methods: Data were acquired from 324 participants (mean age 18.4) in the first phase of the North American Prodrome Longitudinal Study (NAPLS-1), a multi-site consortium following individuals for up to 2 1/2 years. We applied Ward's method for hierarchical clustering data to 8 baseline neurocognitive measures, in 166 CHR individuals, 49 non-CHR youth with a family history of psychosis, and 109 healthy controls. We tested whether cluster membership was associated with conversion to psychosis, social and role functioning, and follow-up diagnosis. Analyses were repeated after data were clustered based on independently developed clinical decision rules. Results: Four neurocognitive clusters were identified: Significantly Impaired (n = 33); Mildly Impaired (n = 82); Normal (n = 145) and High (n = 64). The Significantly Impaired subgroup demonstrated the largest deviations on processing speed and memory tasks and had a conversion rate of 58%, a 40% chance of developing a schizophrenia spectrum diagnosis (compared to 24.4% in the Mildly Impaired, and 10.3% in the other two groups combined), and significantly worse functioning at baseline and 12-months. Data clustered using clinical decision rules yielded similar results, pointing to high convergent validity. Conclusion: Neurocognitive profiles vary substantially in their severity and are associated with diagnostic and functional outcome, underscoring neurocognition as a predictor of illness outcomes. These findings, if replicated, are a first step toward personalized treatment for individuals at-risk for psychosis

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles
    • 

    corecore