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Abstract 16 

 17 

The establishment of a tephra framework for the Greenland ice-cores spanning the last 18 

glacial period, particularly between 25-45 ka b2k, provides strong potential for 19 

precisely correlating other palaeoclimatic records to these key archives. Tephra-based 20 

synchronisation allows the relative timing of past climatic changes recorded within 21 

different depositional environments and potential causal mechanisms to be assessed. 22 

Recent studies of North Atlantic marine records have demonstrated the potential of 23 

tracing cryptotephra horizons in these sequences and the development of protocols 24 

now allows a careful assessment of the isochronous nature of such horizons. Here we 25 
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report on tephrochronological investigations of a marine sequence retrieved from the 26 

Goban Spur, Eastern North Atlantic, covering ~25-60 ka b2k. Density and magnetic 27 

separation techniques and an assessment of potential transport and depositional 28 

mechanisms have identified three previously unknown isochronous tephra horizons 29 

along with deposits of the widespread North Atlantic Ash Zone II and Faroe Marine 30 

Ash Zone III. Correlations between the new horizons and the Greenland ice-core 31 

tephra framework are explored and despite no tie-lines being identified the key roles 32 

that high-resolution climatostratigraphy and shard-specific trace element analysis can 33 

play within the assessment of correlations is demonstrated. The previously unknown 34 

horizons are new additions to the overall North Atlantic tephra framework for the last 35 

glacial period and could be key horizons for future correlations. 36 

 37 

Keywords: Tephrochronology; palaeoclimate synchronisation; volcanic ash; 38 

isochrons; Iceland; major and trace element geochemistry 39 

 40 

1. Introduction 41 

 42 

The tracing of isochronous horizons of volcanic ash between different depositional 43 

realms (tephrochronology) has considerable potential for the independent correlation 44 

and synchronisation of disparate palaeoclimatic sequences and for assessing the 45 

relative timing of past climatic events (Lowe, 2011). The potential of 46 

tephrochronology to assess these relative timings is especially pertinent for the last 47 

glacial period as there is evidence for several abrupt climatic changes preserved 48 

within ice-cores from Greenland (e.g. GRIP Members, 1993; Johnsen et al., 2001; 49 

NGRIP Members, 2004) and numerous North Atlantic marine cores (e.g. Bond et al., 50 
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1993, 1997; Van Kreveld et al., 2000; Martrat et al., 2007; Hall et al., 2011; Zumaque 51 

et al., 2012). 52 

 53 

A large number of tephra horizons have been identified within multiple Greenland 54 

ice-cores spanning the last glacial period (Abbott and Davies, 2012; Bourne et al., 55 

2013, 2015b; Davies et al., 2014). Bourne et al. (2015b) in particular increased the 56 

number of horizons identified in the NGRIP, NEEM, GRIP and DYE-3 ice-cores and, 57 

in combination with past studies, a framework of 99 geochemically characterised 58 

tephra deposits has now been defined for the 25-45 ka b2k period. Developing a 59 

framework of geochemically characterised horizons with strong stratigraphic and 60 

chronological control is an essential first step towards the synchronisation of these 61 

records to other palaeoclimatic sequences in a range of environments. A notable 62 

feature of the ice-core framework is the dominance of deposits, closely spaced in 63 

time, that have similar major element compositions relating to single sources, e.g. the 64 

Icelandic Grímsvötn volcanic system. Subtle major element differences can be used to 65 

discriminate between some deposits, but others have major element compositions 66 

which are indistinguishable (e.g. Bourne et al., 2013).  67 

 68 

This compositional similarity presents a challenge when attempting to correlate tephra 69 

horizons from sequences with limited chronological and/or stratigraphic control. In 70 

these instances it has been widely advocated that any available climatostratigraphic 71 

evidence can be used alongside the compositional data to narrow down potential 72 

correlatives (e.g. Newnham and Lowe, 1999; Newnham et al., 2004; Pearce et al., 73 

2008; Housley et al., 2012; MacLeod et al., 2015) and that trace element analysis of 74 

the tephra deposits may provide a useful secondary compositional fingerprint for 75 
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testing and assessing the robustness of correlations (e.g. Allan et al., 2008; Abbott et 76 

al., 2012, 2014; Albert et al., 2012; Lane et al., 2012; Bramham-Law et al., 2013; 77 

Pearce et al., 2014; Bourne et al., 2015a). 78 

 79 

Overall, there is an order of magnitude difference between the number of tephra 80 

horizons identified in the Greenland ice-cores and North Atlantic marine sequences 81 

between 25-60 ka b2k. Only a few marine records have been investigated for their 82 

tephra content and there is a tendency to focus on visible horizons or on the coarse-83 

grained components (>150 µm) (e.g. Lackschewitz and Wallrabe-Adams, 1997; 84 

Wastegård and Rasmussen, 2014). As a result, only two ice-marine tie-lines have been 85 

defined within the last glacial period. Firstly, the rhyolitic component of the 86 

widespread North Atlantic Ash Zone (NAAZ) II (55,380 ± 1184 a b2k; Svensson et 87 

al., 2008) has been traced within multiple ice and marine cores (e.g. Kvamme et al., 88 

1989; Grönvold et al., 1995; Lacasse et al., 1996; Zielinski et al., 1997; Haflidason et 89 

al., 2000; Austin et al., 2004). Secondly, Faroe Marine Ash Zone (FMAZ) II, a visible 90 

horizon identified in a number of marine cores from the Faroe Islands region 91 

(Wastegård et al., 2006), was traced into the NGRIP ice-core by Davies et al. (2008) 92 

(NGRIP 1848 m; 26,740 ± 390 a b2k). A third ice-marine correlation was also 93 

proposed between the NGRIP 2066.95 m horizon (38,122 ± 723 a b2k) and FMAZ 94 

III, a thick and relatively scattered zone of glass shards traced between a number of 95 

the Faroe Islands region cores (Wastegård et al., 2006; Davies et al., 2010). However, 96 

Bourne et al. (2013) later highlighted the complexity of this period and identified a 97 

series of closely spaced tephra horizons with similar glass compositions in the NGRIP 98 

and NEEM ice-cores. Their compositions all fall within the broad compositional 99 

envelope of FMAZ III and the marine deposit has been interpreted as resulting from 100 
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the amalgamation of primary tephra-fall from a number of volcanic events as a 101 

consequence of low sedimentation rates at the marine core sites (Bourne et al., 2013; 102 

Griggs et al., 2014). Therefore, the prior correlation between FMAZ III and a single 103 

tephra layer in the ice-cores is no longer valid and should not be used as an ice-marine 104 

tie-line. However, the tephra layers in the ice may still act as tie-lines if individual 105 

homogenous horizons from those single events can be found in marine records. This 106 

particular example highlights some of the complexities involved with defining 107 

correlations between the records. 108 

 109 

In recent years, there has been a shift towards the investigation of the cryptotephra 110 

record preserved within marine sediments. Density and magnetic separation 111 

techniques, previously applied to terrestrial sequences, have recently been 112 

successfully used to extract fine-grained cryptotephras, preserved as discrete deposits 113 

of glass shards, from a number of cores around the North Atlantic (e.g. Abbott et al., 114 

2011, 2013, 2014; Griggs et al., 2014; Davies et al., 2014). Magnetic separation 115 

techniques are particularly important for the identification of basaltic cryptotephras in 116 

North Atlantic marine records because of the dominance of basaltic tephra deposits 117 

within the Greenland tephra framework (Abbott and Davies, 2012; Bourne et al., 118 

2013, 2015b). In addition to these methodological advances, Griggs et al. (2014) 119 

outlined a protocol which uses a range of indicators to determine the potential 120 

influence of transportation and depositional processes on the stratigraphic and 121 

temporal integrity of marine tephra deposits. To date, these methods and approaches 122 

have not been utilised to isolate cryptotephras in North Atlantic marine sequences 123 

covering the 25-60 ka b2k period. The Greenland tephra framework in particular, now 124 
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demonstrates the potential for tephrochronological synchronisation if common 125 

horizons can be identified. 126 

 127 

Here we report on tephrochronological investigations of the 25-60 ka b2k period 128 

within a marine core retrieved from the Goban Spur area in the eastern North Atlantic 129 

(MD04-2820CQ). Potential correlations to the Greenland tephra framework are 130 

explored with new high-resolution proxy data from MD04-2820CQ used to help 131 

determine the stratigraphic position of the tephra horizons and trace element analysis 132 

is utilised as a secondary compositional fingerprint.  133 

 134 

2. Materials and Methods 135 

 136 

2.1 MD04-2820CQ 137 

 138 

MD04-2820CQ was retrieved from the Goban Spur area (49°05.29´N; 13°25.90´W; 139 

Figure 1) and is a reoccupation of the OMEX-2K core site (see Hall and McCave, 140 

1998a,b; Scourse et al., 2000; Haapaniemi et al., 2010). A Ca XRF record and a low-141 

resolution record of the percentage abundance of the polar foraminiferal species 142 

Neogloboquadrina pachyderma (sinistral) (Np(s)) have been used to define a 143 

preliminary stratigraphy for the sequence between MIS 3-2. A number of Dansgaard-144 

Oeschger events related to the Greenland Interstadial (GI) events in the Greenland 145 

ice-cores are recognised within this record (Figure 2; Rasmussen et al., 2014). 146 

Between 450-550 cm depth, high-resolution (up to 1 cm) records of Np(s) and ice 147 

rafted debris (IRD) concentrations (150 µm-1 mm fraction) were generated to provide 148 
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a more detailed stratigraphy between DO-12 and DO-8 to help constrain the tephra 149 

deposits within a climatic framework (Figure 6). 150 

 151 

FIGURE 1 152 

 153 

The tephra content of the core was initially investigated at a low-resolution (5 cm 154 

contiguous samples) between 250-650 cm depth. Intervals with distinct peaks in glass 155 

shard content above background levels were subsequently re-investigated at 1 cm 156 

resolution to refine their stratigraphic position (Figure 2).  157 

 158 

FIGURE 2 159 

 160 

2.2 Extraction of tephra-derived glass shards from marine sequences 161 

 162 

From the 5 and 1 cm samples, 0.5 g sub-samples of freeze-dried marine sediments 163 

were immersed in 10% HCl overnight to remove carbonate material. Samples were 164 

then wet sieved using 125 and 80 µm test sieves and 25 µm nylon mesh. The 25-80 165 

µm fraction was then density separated using sodium polytungstate prepared to the 166 

specific gravities of 2.3 and 2.5 g/cm3 to split the material into the density fractions of 167 

<2.3 g/cm3, to remove biogenic material, 2.3-2.5 g/cm3, to isolate rhyolitic material, 168 

and >2.5 g/cm3 to isolate basaltic material (Turney, 1998). To further purify the >2.5 169 

g/cm3 fraction it was magnetically separated using a Frantz Isodynamic Magnetic 170 

Separator. The methodology and conditions for magnetic separation are outlined in 171 

Griggs et al. (2014) and allow the separation of non-magnetic quartz material from 172 

any paramagnetic basaltic material. The >125 µm and 80-125 µm grain-size fractions, 173 
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and the 2.3-2.5 g/cm3 and magnetic >2.5 g/cm3 density fractions, were mounted on 174 

microscope slides in Canada Balsam for optical microscopy to quantify their glass 175 

shard content. 176 

 177 

2.3 Geochemical analysis of individual glass shards 178 

 179 

Samples for geochemical analysis were prepared using the procedure outlined in 180 

Section 2.2. The fraction of interest was then mounted in epoxy resin on a 28 × 48 181 

mm frosted microscope slide to prepare thin sections of the glass shards. This was 182 

achieved by grinding the material using decreasing grades of silicon carbide paper and 183 

then polishing the surface using 9, 6 and 1 µm diamond suspension.  184 

 185 

Major element compositions of individual shards were determined using electron-186 

probe micro-analysis (EPMA) at the Tephra Analytical Unit, University of Edinburgh, 187 

using a Cameca SX100 with five wavelength dispersive spectrometers. The operating 188 

conditions followed those outlined in Hayward (2012). Calibration was carried out 189 

using pure metals, synthetic oxides and silicate standards and the secondary standards 190 

of Cannetto Lami Lava, Lipari and BCR2g were analysed at regular intervals to 191 

monitor for instrumental drift and assess the precision and accuracy of analysed 192 

samples (see Table S18). For data comparison all analyses were normalised to an 193 

anhydrous basis, i.e. 100 % total oxides, but all raw data analyses are provided in the 194 

supplementary information (Tables S1-S17). Statistical comparisons between tephra 195 

horizons have been made using the statistical distance test (D2) of Perkins et al. (1995, 196 

1998) and the similarity coefficient function (SC) of Borchardt et al. (1972). 197 

 198 
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Trace element compositions of single shards from one marine and one ice-core 199 

horizon were analysed using laser ablation inductively coupled plasma mass 200 

spectrometry (LA-ICP-MS) at Aberystwyth University. A Coherent GeoLas 193 nm 201 

Excimer laser coupled with a Thermo Finnigan Element 2 high-resolution sector field 202 

mass spectrometer was utilised (Pearce et al., 2011). Due to the small grain size of the 203 

shards making up the ice-core horizon, a laser with a beam diameter of 10 µm and a 204 

fluence of 10 J/cm2 was pulsed at 5 Hz with a flash duration of ~10 ns. Despite the 205 

larger grain size of shards in the marine horizon, a 10 µm laser beam diameter was 206 

used for all analyses to limit any differential impact of fractionation effects. As a 207 

potential correlation was being tested, the samples were analysed ‘side-by-side’ to 208 

limit any potential influence of instrumental differences between analytical periods 209 

(Pearce et al., 2014). Trace element concentrations were calculated using methods 210 

outlined in Pearce et al. (2007), with 29Si previously determined through EPMA used 211 

as the internal standard and NIST 612 used as the calibration standard, taking 212 

concentrations from Pearce et al. (1997). A correction factor was used to remove bias 213 

in analyses caused by fractional effects (Pearce et al., 2011). Trace element 214 

concentrations for individual shards are provided in Table S19 and analyses of the 215 

secondary standards BCR2g and BHVO-2g are provided in Table S20. 216 

 217 

3. Results 218 

 219 

Of the 80 intervals investigated at low-resolution, 21 were selected for high-resolution 220 

analysis resulting in the processing of 105 1 cm samples. Figure 2 integrates low-221 

resolution counts from intervals that were not reanalysed with the high-resolution 222 

counts. These overall shard profiles were employed to select 17 samples for 223 
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geochemical analysis (Figure 2). Overall, the record contains a number of distinct 224 

concentrations of brown glass shards and this type of shard is also present as a low 225 

background. There is a more consistent background of rhyolitic shards throughout the 226 

whole of the studied interval. Given the tephrostratigraphical record, the deposits are 227 

grouped into five periods and used as a basis to present results below. To determine 228 

the source of the glass shards, compositions are compared to glass and whole rock 229 

analyses to allow material to be assigned to Icelandic rock suites and specific volcanic 230 

systems. 231 

 232 

3.1 Period 1 - Post DO-3 233 

 234 

Between 275-279 cm a dispersed zone of shards with a low concentration of basaltic 235 

shards and no discernible peak was identified. Geochemical characterisation shows 236 

that the glass in this zone has a highly heterogeneous composition with shards of both 237 

transitional alkali and tholeiitic composition present (Figure 3a). Similar 238 

heterogeneity is observed in shards from both the less-than and greater-than 80 µm 239 

grain-size fractions (Figure 3). This characterisation shows that the deposit is an 240 

amalgamation of material from a number of volcanic eruptions from multiple volcanic 241 

centres. 242 

 243 

FIGURE 3 244 

 245 

According to the stratigraphy for MD04-2820CQ, this zone of ash was deposited 246 

during the stadial period following DO-3. In the NGRIP ice-core, FMAZ II was 247 

deposited within Greenland Stadial (GS) 3 approximately 1000 years after the cooling 248 
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transition at the end of GI-3 (Davies et al., 2008). The composition of MD04-2820CQ 249 

275-279 cm demonstrates that this deposit does not directly relate to the homogenous 250 

transitional alkali basaltic FMAZ II horizon found within ice and marine sequences 251 

(Figure 3b). Some shard analyses fall within the compositional envelopes of the 252 

homogenous VZ 1x and the heterogeneous VZ 1 ash zones from cores on the 253 

Reykjanes Ridge, but the greater heterogeneity of the 275-279 cm deposit suggests 254 

they are unrelated (Figure 3b). 255 

 256 

The compositional heterogeneity and lack of a distinct peak in the shard concentration 257 

profile strongly suggests that this deposit represents a minor input of material, 258 

potentially through iceberg rafting or secondary transportation processes such as 259 

bottom currents, and cannot be regarded as isochronous. 260 

 261 

3.2 Period 2 – DO-5 to DO-3 262 

 263 

The highest glass shard concentration peak in the 25-80 µm fraction is observed 264 

within period 2 at 342-343 cm (Figure 2). The maximum peak in the >125 µm size 265 

fraction is between 341-342 cm. Two narrow zones of ash below this high peak 266 

between 355-360 cm and 370-375 cm depth were found in low-resolution counts, but 267 

no distinct peaks in concentration were observed in the high-resolution counts.  268 

 269 

Shards from the main peak and the two underlying ash zones have a basaltic 270 

composition (Figure 4a). With the exception of a shard population >80 µm in size in 271 

the 373-374 cm sample, and a few outlying analyses that have affinities to the 272 

Icelandic transitional alkali rock suite, these deposits have a tholeiitic composition 273 
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sourced from the Kverkfjöll volcanic system (Figure 4a). Although the analysed glass 274 

shards are from four different depths, it is clear that the majority of shards from each 275 

interval occupy the same compositional space on geochemical plots and hence are 276 

related to one another. The relatively homogenous dominant population has SiO2 277 

concentrations between 48.5-51.0 %wt, CaO concentrations between 8.9-9.9 %wt and 278 

FeO concentrations of ~15 %wt (Figure 4). Slight geochemical bimodality can be 279 

observed, most notably within the TiO2 concentrations and FeO/MgO ratios (Figure 280 

4bi). This bimodality is present within the main shard peak at 342-343 cm and the 281 

underlying zones of low shard concentration. However, the deposit at 373-374 cm has 282 

proportionally more shards with high TiO2 values than the other two deposits (Figure 283 

4bi).  284 

 285 

FIGURE 4 286 

 287 

Determining potential correlatives, the isochronous nature and likely transport 288 

mechanisms for these deposits is complex. Bourne et al. (2015b) identified a number 289 

of tholeiitic basaltic tephra horizons with a Kverkfjöll source in the Greenland ice-290 

cores between GI-5.2 and GS-4. The composition of all 10 of these ice-core horizons 291 

fall within the compositional field of the main population of the 342-343 cm and 292 

underlying deposits (Figure 4b), hampering their correlation to individual ice-core 293 

horizons. Some of these eruptives, however, have greater compositional 294 

heterogeneity, such as GRIP 2064.35 m, NGRIP 1931.60 m and NGRIP 1950.50 m, 295 

and cover the full compositional range observed in the marine deposit (Figure 4c). 296 

The peak input of ash at 342-343 cm may represent a single primary tephra-fall event 297 

related to one of these eruptions with the underlying deposits, between 355-360 and 298 
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370-375 cm, possibly representing downward movement of tephra within the 299 

sediment column via bioturbation. This scenario seems unlikely, however, due to the 300 

lack of a distinct background of basaltic shards between the deposits. An alternative 301 

scenario is that the geochemical similarities are a consequence of the marine deposits 302 

being composed of an amalgamation of glass shards from a number of eruptions. 303 

Shards could be amalgamated during protracted input of material via primary fall and 304 

post-depositional reworking, akin to the proposed depositional mechanism for FMAZ 305 

III (see Section 1). This proposition is, however, not supported by the relatively 306 

discrete nature of the peak input of ash to the site between 342-343 cm and the 307 

underlying deposits, which implies that tephra delivery occurred as short-lived pulses 308 

of material. 309 

 310 

Delivery via repeated iceberg rafting events could create deposits of this nature. The 311 

greater heterogeneity of the material at 373-374 cm depth, with a transitional alkali 312 

composition similar to those of Katla eruptives in the Greenland tephra framework 313 

between GI-5.2 and GS-4 (Figure 4ai), and an additional tholeiitic population from 314 

Grímsvötn (Figure 4aii), may indicate that this material, with a slightly different 315 

compositional signature, is derived from a prior iceberg rafting event. We cannot fully 316 

test this proposition because an IRD record has currently not been established over 317 

this period. However, the high concentration of coarse-grained shards (>125 µm) 318 

(Figure 2), in a relatively distal location to Iceland, supports iceberg rafting as the 319 

transport process. Overall, this likelihood prevents the deposits in period 2 from being 320 

useful regional isochrons but they could be used for local core correlations 321 

(Brendryen et al., 2010). 322 

 323 
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3.3 Period 3 – DO-9 to DO-8  324 

 325 

Period 3 is characterised by an approximately 20 cm thick zone of elevated basaltic 326 

glass concentrations within which four small peaks in concentration can be observed. 327 

Peaks at 456-457 cm, 460-461 cm, 464-465 cm and 472-473 cm depth are observed in 328 

the 25-80 µm and >125 µm grain size fractions and three can be clearly observed in 329 

the 80-125 µm fraction. Each peak contains shards with affinities to either the 330 

transitional alkali or tholeiitic rock suites of Iceland, with the material from each of 331 

these rock suites displaying distinct heterogeneity (Figure 5a). Compositional 332 

similarities between the deposits and the continuous nature of the ash deposition allow 333 

the whole of the deposit between 455-475 cm to be interpreted as a single entity. 334 

 335 

FIGURE 5 336 

 337 

According to the MD04-2820CQ stratigraphy, this deposit spans the warming 338 

transition related to DO-8 (Figure 2 and 6), akin to the FMAZ III deposit identified in 339 

other North Atlantic marine records. Distinct similarities are evident between the 340 

heterogeneous Grímsvötn-sourced material of FMAZ III characterised from a record 341 

in the SE Norwegian Sea (Griggs et al., 2014) and the tholeiitic material present in 342 

this ash zone (Figure 5). Homogenous Grímsvötn-sourced populations identified in 343 

the Greenland tephra framework between GI-8c and GS-9 cannot be identified at any 344 

depth in MD04-2820CQ (Figure 7a). The geochemical range of the tholeiitic material 345 

in MD04-2820CQ encompasses that of glass in all the ice-core horizons (Figure 7a). 346 

Despite the failure to correlate to an ice-core deposit, the MD04-2820CQ deposit can 347 

be correlated to the marine FMAZ III due to the stratigraphic similarities and 348 
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geochemical affinity of the tholeiitic basaltic material. None of the Faroes Islands 349 

region occurrences of FMAZ III contain a population of transitional alkali material as 350 

observed in the MD04-2820CQ deposit (Figure 5; Wastegård et al., 2006; Griggs et 351 

al., 2014). Two transitional alkali basaltic horizons from Katla were identified in early 352 

GS-9 by Bourne et al. (2013, 2015b) and also fall within the range of the MD04-353 

2820CQ analyses, but the heterogeneity is far greater in the marine deposits and no 354 

potential correlations can be suggested (Figure 7b).  355 

 356 

FIGURE 6 AND 7 357 

 358 

Griggs et al. (2014) interpreted FMAZ III in the Faroe Islands region as resulting from 359 

the amalgamation of primary fall material from closely timed Grímsvötn eruptions. 360 

Sediment accumulation rates are considered to be insufficient to allow the events to be 361 

separated and secondary processes such as bioturbation and bottom currents may have 362 

caused mixing of shards between depths. An ice-rafting transport and deposition 363 

mechanism was ruled out by Griggs et al. (2014) due to a lack of a coeval IRD signal. 364 

Within MD04-2820CQ, IRD concentrations are declining between 455-475 cm and 365 

there is no direct co-variance with glass shard concentrations (Figure 6). This lack of 366 

correlation could imply that the transport, deposition and post-deposition mechanisms 367 

are common between the MD04-2820CQ and JM11-FI-19PC core sites. The 368 

incorporation of transitional alkali material at the MD04-2820CQ site could result 369 

from more southerly transport of material from these eruptions. This would also 370 

account for the relative lack of transitional alkali eruptions in the Greenland tephra 371 

framework during this interval. As highlighted earlier, the FMAZ III cannot be used 372 

as a precise ice-marine tie-line (Bourne et al., 2013). However, the correlation of 373 
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MD04-2820CQ 455-475 cm to FMAZ III extends the geographical distribution of this 374 

deposit and it can be used as a marine-marine tie-line.   375 

 376 

A small peak in colourless shards occurs at 463-464 cm and major element analysis 377 

shows that the glass has a rhyolitic composition and an affinity to the Icelandic 378 

transitional alkali rock suite (Figure 8a). Two populations are apparent, one with 379 

affinities to material from the rhyolitic component of NAAZ II and one with affinities 380 

to a number of Katla-sourced rhyolitic horizons deposited during the last glacial-381 

interglacial transition and an underlying horizon in MD04-2820CQ at a depth of 497-382 

498 cm (Figure 8b and c). These compositional affinities and the low shard 383 

concentration suggests that this material is not from a distinct volcanic event but may 384 

relate to a background of reworked colourless shards in the sequence. 385 

 386 

FIGURE 8 387 

 388 

3.4 Period 4 – DO-12 to DO-9 389 

 390 

During this period a series of three relatively discrete peaks (~1-3 cm) in brown glass 391 

shards can be identified (Figure 2 and 6). The peaks in brown shards at 487-488 cm 392 

and 524-525 cm depth are distinct across all grain-size fractions, whereas the peak at 393 

511-512 cm is only evident within the 25-80 and >125 µm grain-size fractions. A 394 

broad increase in colourless shards between 490-500 cm displays a double peak in 395 

concentration within the 25-80 µm grain-size fraction at 493-494 cm and 497-498 cm.  396 

 397 

3.4.1 MD04-2820CQ 487-488 cm 398 
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 399 

All shards in the 487-488 cm deposit are basaltic in composition with one dominant 400 

and homogenous tholeiitic population (Figure 9). Some outliers with a transitional 401 

alkali composition are also observed, but are primarily restricted to the >80 µm 402 

fraction (Figure 9a). The main population is characterised by SiO2 concentrations of 403 

~49.5 %wt, TiO2 concentrations between 2.6-3.2 %wt, CaO concentrations between 404 

10.1 and 10.9 %wt and FeO concentrations of ~13.8 %wt, showing affinities to the 405 

Grímsvötn volcanic system (Figure 9).  406 

 407 

FIGURE 9 408 

 409 

A large number of Grímsvötn eruptives are found within the Greenland tephra 410 

framework between 25-45 ka b2k with several showing compositional similarities to 411 

the main population of MD04-2820CQ 487-488 cm (Bourne et al., 2015b). 412 

Stratigraphic information from MD04-2820CQ is thus employed to provide a broad 413 

constraint on the timing of this eruption relative to the main climato-stratigraphic 414 

framework for the North Atlantic. Further discussion of this approach is provided in 415 

Section 4. MD04-2820CQ 487-488 cm was deposited just prior to Heinrich event 4 416 

(Figure 6), which is widely regarded to have occurred in GS-9 and between DO-9 and 417 

DO-8 (Sanchez Goñi and Harrison, 2010). The high-resolution Np(s) record for this 418 

interval shows that MD04-2820CQ 487-488 cm falls within a cold period above two 419 

distinct decreases in Np(s) percentages, between 490-510 cm depth, and thought to be 420 

related to warming over the DO-9 and DO-10 events (Figure 6iii). These events were 421 

not apparent within the original low resolution Np(s) record or the Ca XRF record 422 

(Figure 2ii and 6iv). These stratigraphic constraints suggest deposition during the cold 423 
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period following DO-9, which is equivalent to GS-9 within the Greenland 424 

stratigraphic framework (Rasmussen et al., 2014). The GS-9 interval has been fully 425 

sampled in all the ice-cores that contribute to the Greenland tephra framework (see 426 

Bourne et al., 2015b). In total, 10 Grímsvötn-sourced tephra horizons have been 427 

identified in one or more of the Greenland cores (Figure 6b). Geochemical 428 

comparisons show that no horizons provide a clear major element match to 487-488 429 

cm. Therefore, a potential correlative to the marine horizon cannot be proposed 430 

(Figure 10a).  431 

 432 

FIGURE 10 433 

 434 

The transport mechanism for this deposit is unlikely to be iceberg rafting because of 435 

the relatively homogenous geochemical signature of the material and a lack of co-436 

variance with IRD (Figure 6). Other potential mechanisms, sea-ice rafting and 437 

primary airfall, would not impart a temporal delay and the deposit can be assumed to 438 

be isochronous. The relative proportion of larger grains in the 80-125 µm and >125 439 

µm fractions compared to other deposits, e.g. 524-525 cm, could be indicative of 440 

transportation via sea-ice rafting. This deposit is considered to have strong 441 

stratigraphic integrity as the peak in shard concentration is relatively discrete with 442 

only a restricted downward tail in concentration, most likely due to post-depositional 443 

bioturbation. Although not present in Greenland, if it was widely dispersed over the 444 

North Atlantic, this volcanic deposit may be a useful isochron for linking this 445 

sequence to other marine records. 446 

 447 

3.4.2 MD04-2820CQ 493-494 cm and 497-498 cm 448 
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 449 

According to the stratigraphy for MD04-2820CQ, the slight increase in colourless 450 

shards between 490-500 cm occurred during the short-lived cold period between DO-451 

10 and DO-9, based on an increase in Np(s) percentages (Figure 2 and 6). Shards from 452 

both peaks have a rhyolitic composition (Figure 8). The material from the larger peak 453 

at 497-498 cm has affinities to the transitional alkali rock suite of Iceland and forms a 454 

single homogenous population with SiO2 concentrations between 70.5 and 71.5 %wt, 455 

Al 2O3 concentrations of ~13.5 %wt, K2O concentrations of ~3.6 %wt and CaO 456 

concentrations between 1.44 and 1.65 %wt (Figure 8). A source for these glass shards 457 

could not be determined through comparisons to characterisations of proximal whole 458 

rock rhyolites from Iceland, which may be due to the presence of other mineral phases 459 

within whole rock analyses. However, compositional similarities to glass shards from 460 

last glacial-interglacial transition rhyolitic tephra horizons sourced from the Katla 461 

volcanic system (Figure 8b) strongly indicate that this is the volcanic source. Shards 462 

in the overlying smaller peak at 493-494 cm fall into two populations, one with 463 

affinities to the Katla material 4 cm below and one with strong overlap with shards 464 

from 610-611 cm in the core from NAAZ II (Figure 8b and c). No rhyolitic horizons 465 

have been isolated within the Greenland ice-core records between GI-9 and GI-11 466 

(Bourne et al., 2015b). 467 

 468 

The homogeneity of the 25 shards from the 497-498 cm peak and the predominance 469 

of material in the 25-80 µm grain size fraction suggests that this represents primary 470 

fall deposition. The upward tail in shard concentrations could be related to secondary 471 

redistribution of material by bottom currents and the compositional bimodality in this 472 

tail (493-494 cm sample) suggests reworking of the underlying Katla-sourced material 473 
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and NAAZ II input. Shards from NAAZ II (see Section 3.5) are present within 474 

overlying sediments and are the likely primary constituent of the reworked 475 

background of fine-grained rhyolitic material.   476 

 477 

3.4.3 MD04-2820 CQ 511-512 cm 478 

 479 

Brown shards from the peak at 511-512 cm are basaltic in composition with both 480 

tholeiitic and transitional alkali material present. Distinct heterogeneity can be 481 

observed in a number of components, e.g. Na2O, K2O, TiO2 and FeO, and the 482 

analyses cannot be grouped into clear populations (Figure 9). The glass peak is 483 

directly associated with a peak in IRD, which combined with the geochemical 484 

signature strongly suggests it is an ice-rafted deposit and cannot be assumed to be 485 

isochronous. 486 

 487 

3.4.4 MD04-2820 CQ 524-525 cm and 529-530 cm 488 

 489 

The highest shard concentration in this period is found at 524-525 cm and exhibits a 490 

broader rise in shard concentrations including a small shard peak 4 cm below the main 491 

peak at 529-530 cm (Figure 2 and 6). The stratigraphy of MD04-2820CQ shows that 492 

the tephra horizon falls on the decrease in Np(s) percentage and increase in Ca content 493 

of the sediment that has been related to warming at the onset of DO-11 (Figure 2 and 494 

6). Shards from both the main peak and underlying peak have a tholeiitic basaltic 495 

composition (Figure 9a). Shards from 524-525 cm form a homogenous population 496 

characterised by distinctly high FeO concentrations between 14.5 and 16.7 %wt, low 497 

CaO concentrations of ~9.25 %wt, TiO2 concentrations of ~3.2 %wt and MgO 498 
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concentrations between 4.5 and 5.5 %wt (Figure 9). Comparison with proximal 499 

deposits highlights similarities to the products of both the Kverkfjöll and Grímsvötn 500 

volcanic systems (Figure 9b).  501 

 502 

Four Grímsvötn-sourced deposits are found within the GS-12 climatic period and one 503 

within GI-11 in the Greenland tephra framework (Bourne et al., 2015b). Statistical 504 

comparisons show that none of these horizons are statistically different from 524-525 505 

cm and all SC values exceed 0.95, due to the common source (Table 1). There is a 506 

clear affinity between the main population of MD04-2820CQ 524-525 cm and NGRIP 507 

2162.05 m with a low D2 value and the highest similarity coefficient of 0.977; this 508 

assessment is corroborated by major element biplot comparisons (Table 1; Figure 9b). 509 

To test this affinity, the trace element composition of both horizons was determined. 510 

Distinct differences can be observed in these characterisations, both in absolute 511 

concentrations and trace element ratios (Figure 10c). These demonstrate that the two 512 

horizons were not produced during the same volcanic event and cannot be correlated 513 

between the archives. The differences in trace element composition could be due to a 514 

number of factors, which will be discussed in Section 4.2. 515 

 516 

TABLE 1 517 

 518 

Assessing this deposit according to the protocol of Griggs et al. (2014) is problematic 519 

as key indicators are contradictory. The homogenous composition of the deposit 520 

suggests that this deposit was unlikely to be iceberg rafted, but it was deposited during 521 

a period of increased IRD concentrations (Figure 6). It is possible that primary fall 522 

deposition is superimposed on a period dominated by iceberg rafting. What is more, 523 
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iceberg rafting is typically thought to transport heterogeneous tephra deposits from an 524 

amalgamation of tephra from a number of eruptions. Tracing this horizon in the same 525 

stratigraphic position in another marine sequence would provide supporting evidence 526 

for this interpretation.  527 

 528 

Glass shards from the small peak at 529-530 cm were additionally geochemically 529 

analysed to assess its relationship to the main overlying peak at 524-525 cm. All of 530 

the shards have a tholeiitic basaltic composition (Figure 9a), with three distinct major 531 

element populations present based on major oxides including FeO, CaO, MgO and 532 

Al 2O3 (Figure 8bii). Half of the shards from this deposit make up the main population 533 

and indicate a source from either the Veidivötn-Bárdabunga or Reykjanes volcanic 534 

systems (Figure 9b). One population is sourced from Grímsvötn or Kverkfjöll and has 535 

compositional affinities to MD04-2820CQ 524-525 cm and the final population is 536 

sourced from Grímsvötn and has affinities to MD04-2820CQ 487-488 cm (Figure 9b). 537 

The only known tephra horizon in the Greenland ice-core framework between 25-45 538 

ka b2k with a composition similar to the dominant population was deposited during 539 

GS-5 and thus is not a correlative to this deposit. The similarity in geochemistry 540 

between the sub-population and MD04-2820CQ 487-488 cm is likely to be 541 

coincidental, with the Greenland tephra framework showing that Grímsvötn produced 542 

many eruptives with similar compositions throughout this period (Bourne et al., 543 

2015b). The heterogeneity of this material could be linked to some iceberg rafting of 544 

earlier events combined with downward reworking of material from the 524-525 cm 545 

peak.  546 

 547 

3.5 Period 5 – DO-15 to DO-14 548 
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 549 

The highest concentration of colourless shards was observed at 610-611 cm with 550 

~19,500 shards per 0.5 g dry weight sediment (dws) in the 25-80 µm fraction and 551 

~450 shards in the >125 µm fraction in this cryptotephra (Figure 2b). A peak in shards 552 

80-125 µm in diameter associated with this deposit occurs 1 cm above this depth 553 

between 609-610 cm (Figure 2b). Within the proposed MD04-2820CQ stratigraphy, 554 

the shard concentration peak falls on the cooling transition at the end of DO-15 as 555 

shown by the rise in the Np(s) percentage (Figure 2b). 556 

 557 

These colourless shards have a rhyolitic composition with affinities to the Icelandic 558 

transitional alkali rock suite (Figure 8a) and are characterised by SiO2 concentrations 559 

of ~75.8 %wt, Al2O3 concentrations of ~11.7 %wt, FeO concentrations between 2.25 560 

and 2.8 %wt and K2O concentrations of ~4.2 %wt. Geochemical similarities are 561 

highlighted between the MD04-2820CQ 610-611 cm deposit and other occurrences of 562 

the rhyolitic component of NAAZ II (II-RHY-1) in North Atlantic marine sequences 563 

and the GRIP ice-core (Figure 8c). There are some slight offsets between the MD04-564 

2820CQ characterisations and the older analyses, e.g. the MD04-2820CQ shards have 565 

higher Na2O and lower Al2O3 and SiO2 concentrations, and these differences can be 566 

attributed to the effect of sodium loss during the older analyses (Hunt and Hill, 2001; 567 

Kuehn et al., 2011; Hayward, 2012). Therefore, these newer analyses represent a more 568 

up-to-date characterisation of the II-RHY-1 component of NAAZ II and should be 569 

utilised in future comparisons.  570 

  571 

Identification of this horizon provides a direct ice-marine tie-line, a basal stratigraphic 572 

constraint for the core, and a test of the proposed stratigraphy for MD04-2820CQ 573 
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because this horizon has been identified in the Greenland ice-cores and other marine 574 

sequences on the cooling transition at the end of GI-15 (Grönvold et al., 1995; Austin 575 

et al., 2004).  576 

 577 

4. Discussion 578 

 579 

4.1 Tephrostratigraphy of MD04-2820CQ between ~25-60 ka b2k and implications 580 

for the regional tephra framework 581 

 582 

This work represents one of the first studies to employ density and magnetic 583 

separation techniques to isolate and identify cryptotephras within North Atlantic 584 

marine sediments between 25-60 ka b2k. Here, the identification of basaltic tephra 585 

deposits has been improved when compared with previous studies, e.g. Abbott et al. 586 

(2014), as magnetic separation of basaltic shards from the host sediment produced 587 

purer samples for optical microscopy work and geochemical analysis preparation. 588 

 589 

Overall, the tephrostratigraphy of MD04-2820CQ is complex and differing transport 590 

and deposition processes have given rise to a range of contrasting deposits. For 591 

example, the geochemical heterogeneity of the MD04-2820CQ 275-279 cm and 511-592 

512 cm deposits and to a certain extent the deposits between 340-380 cm depth 593 

suggests they were deposited via iceberg rafting. Whilst three of the deposits, the 594 

basaltic 487-488 cm and 524-525 cm and the rhyolitic 497-498 cm, have isochronous 595 

characteristics and have the potential to act as tie-lines between records, however 596 

none of these horizons were found to have correlatives within the current Greenland 597 

tephra framework (Table 2; see section 4.2 for further discussion).  598 
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 599 

TABLE 2 600 

 601 

Two of the deposits in MD04-2820CQ have been correlated to previously known 602 

tephra horizons (Table 2). MD04-2820CQ 610-611 cm correlates to NAAZ II and 603 

permits a direct link to the Greenland ice-cores and other marine sequences while 604 

MD04-2820CQ 455-475 cm can be correlated to FMAZ III, a broad marine-marine 605 

link around DO-8 to sequences in the Faroe Island region. The MD04-2820CQ 455-606 

475 cm deposit differs from FMAZ III occurrences in the Faroe Islands region as it 607 

contains transitional alkali basaltic glass in addition to the tholeiitic basaltic glass 608 

characteristic of the original deposit (Griggs et al., 2014). Further work on tracing the 609 

FMAZ III at sites between the Goban Spur area and the Faroe Islands region may help 610 

isolate the transportation and depositional processes controlling this contrast. At 611 

present the MD04-2820CQ core site on the Goban Spur is the furthest south that 612 

FMAZ III has been identified; this increase in geographical range of the deposit 613 

suggests that it could be a key stratigraphic marker for the DO-8 event in widespread 614 

marine records. 615 

 616 

The identification of horizons that do not at present have correlatives in other 617 

palaeoarchives adds three further volcanic events into the regional framework for the 618 

25-60 ka b2k period (Table 2). Tracing these horizons within other sequences would 619 

test our assertion that these are atmospherically-derived and potentially validate their 620 

use as isochronous tie-lines. This is most relevant for the MD04-2820CQ 497-498 cm 621 

deposit which has a broader shard count profile relative to the two basaltic deposits. 622 

The timing of emplacement of the three deposits can be inferred from their 623 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

relationship to the high-resolution stratigraphy for MD04-2820CQ shown in Figure 6, 624 

which can act as a guide for tracing these deposits in other records (Table 2). 625 

 626 

The two basaltic deposits are thought to be sourced from the Grímsvötn and/or 627 

Kverkfjöll volcanic systems, providing further support for the high productivity of 628 

these systems during the last glacial period (cf. Bourne et al., 2015b). These results 629 

also demonstrate that their eruptive products were transported south of Iceland, most 630 

likely via direct atmospheric transport. Katla is thought to be the most likely source of 631 

MD04-2820CQ 497-498 cm and a correlative could not be identified in the Greenland 632 

ice-cores (Section 3.4.2; Bourne et al., 2015b). Indeed, no rhyolitic tephra horizons 633 

from this source and very few Icelandic rhyolitic horizons are present throughout the 634 

last glacial period in the Greenland ice-cores (Davies et al., 2014; Bourne et al., 635 

2015b). The identification of this Katla horizon within the cool interval between DO-636 

10 and DO-9 thus demonstrates that older rhyolitic eruptions from this source did 637 

occur prior to the last glacial-interglacial transition (Lane et al., 2012). 638 

 639 

4.2 Testing correlations using stratigraphy and trace element analysis 640 

 641 

The stratigraphy of MD04-2820CQ and its likely relationship to the Greenland 642 

climatic record was used throughout to assess the timing of the emplacement of the 643 

tephra deposits. This climatostratigraphic approach was particularly crucial for 644 

assessing potential correlatives for the MD04-2820CQ 487-488 cm and 524-525 cm 645 

horizons and high-resolution records of Np(s) and IRD were available for these 646 

purposes.  647 

 648 
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The correlation of tephras solely based on geochemical matches between horizons, 649 

relies on every eruption having a unique geochemical signature. For the North 650 

Atlantic region, however, the new Greenland tephra framework demonstrates that 651 

multiple basaltic horizons with overlapping geochemical signatures were erupted 652 

within relatively short time-intervals (Bourne et al., 2013, 2015b). Therefore, as is 653 

required for many other tephrochronological studies, stratigraphic control was used 654 

alongside the compositional data to guide the testing of correlations. This approach 655 

does introduce an element of circularity if the tephra correlations are to be used as 656 

climatically independent tools to test stratigraphic comparisons and the relative timing 657 

of past climatic changes (see discussion in Matthews et al., 2015). However, in this 658 

instance the approach is valid as the overall stratigraphy of MD04-2820CQ is 659 

supported by distinct event markers such as Heinrich Event 4 and NAAZ II and there 660 

is a strong relationship to the sequence of well-defined Greenland Interstadial events 661 

recorded in the ice-cores. This relationship is especially apparent over the section 662 

where high-resolution proxy data has been acquired. In addition, the stratigraphic 663 

comparisons used to test correlations were broad and on a millennial-scale, and not 664 

centennial or decadal-scale which is the potential magnitude of climatic phasing 665 

between the environments.  666 

 667 

The use of stratigraphy to guide correlations will be limited or problematic when 668 

correlations are being assessed between the Greenland records and marine sequences 669 

that have a less well-resolved stratigraphic framework, due to core location and/or 670 

sedimentation rate differences. However, due to the high frequency of Icelandic 671 

basaltic eruptions, particularly from Grímsvötn, some form of stratigraphic constraint 672 

is essential for exploring potential tie-lines. We recommend that, when possible, high-673 
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resolution stratigraphic information is gained over key intervals of interest to aid 674 

correlation testing. 675 

  676 

The potential correlation between MD04-2820CQ and NGRIP 2162.05 m was tested 677 

using grain-specific trace element analysis, due to strong major element similarities 678 

(Figure 10b). This analysis showed that the two horizons were not produced during 679 

the same volcanic event (Figure 10c). The use of trace element analysis to test and 680 

add robustness to correlations has been encouraged previously and its use is steadily 681 

increasing within tephrochronological studies (see Section 1). Our work provides 682 

further support for the use of this technique for testing correlations and for providing a 683 

key insight into geochemical variability between Icelandic eruptions, specifically 684 

those sourced from the Grímsvötn volcanic system. As basaltic magmas have 685 

undergone relatively limited compositional evolution, intra-eruption variability in 686 

trace elements from a single evolving system could be limited as significant fractional 687 

crystallisation may not have occurred, this being the process which dominantly 688 

controls trace element evolution (see Pearce et al., 2008). Therefore, it is of interest to 689 

see clear trace element differences between two Grímsvötn-sourced eruptions with 690 

highly similar major element compositions. In this instance, the differences could 691 

result from magmatic evolution within a single, fractionating magma chamber 692 

between eruptions or the eruptions tapped magma from different fissures within the 693 

overall Grímsvötn system with similar major element but differing trace element 694 

compositions. Trace element analysis of proximal deposits could provide an insight 695 

into the intra-eruption variability of Grímsvötn basalts. 696 

 697 

5. Conclusions 698 
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 699 

The potential for using density and magnetic separation techniques to identify tephra 700 

deposits within North Atlantic marine sequences spanning ~25-60 ka b2k has been 701 

clearly demonstrated. Applying these techniques to MD04-2820CQ has unearthed a 702 

complex tephrostratigraphical record with differing transportation and depositional 703 

processes operating at different times, but the identification of isochronous deposits 704 

highlights the potential for using tephrochronology to link marine sequences. One of 705 

the biggest challenges for establishing correlations is the high number of 706 

compositionally similar eruptives preserved in the ice-cores within short time-707 

intervals. We have outlined how stratigraphic constraints can help reduce the number 708 

of potential candidates and the need for high-resolution proxy data to constrain key 709 

intervals. The use of stratigraphic constraints from proxy data could ultimately be 710 

limited by the resolution of marine records. In addition, it has been shown that trace 711 

element comparisons provide a secondary fingerprint that can test the robustness of 712 

correlations suggested by major element geochemical similarities. Exploration of 713 

further records in this region will help assess the isochronous nature of the key 714 

deposits in MD04-2820CQ and represent a major step towards synchronisation of 715 

regional marine archives using cryptotephra deposits. 716 
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Figures 736 

 737 

Figure 1: Location map of the MD04-2820CQ core site and other cores referred to 738 

within the text. 739 

 740 

Figure 2: (a) Climate and tephrostratigraphy of the last glacial period within the 741 

MD04-2820CQ core. (i) XRF (ITRAX core scanning) Ca count rates (ii) percentage 742 

abundance of Neogloboquadrina pachyderma (sinistral) (iii) tephrostratigraphy 743 

incorporating 5 and 1 cm resolution shard counts. (b) Inset of climate and 744 

tephrostratigraphy of colourless shards between 550-650 cm depth. This figure is an 745 

expansion of the colourless shard counts that were truncated on Figure 2a. Red bars 746 

denote depth intervals from which glass shards were extracted for geochemical 747 

analysis. 748 

 749 

Figure 3: Comparison of glass compositions from MD04-2820CQ 275-279 cm to that 750 

from FMAZ II, VZ 1x and VZ 1 characterisations from Davies et al. (2008), Griggs et 751 

al. (2014) and Lackschewitz and Wallrabe-Adams (1997). (a) Inset of total alkalis 752 

versus silica plot. Division line to separate alkaline and sub-alkaline material from 753 

MacDonald and Katsura (1964). Chemical classification and nomenclature after Le 754 

Maitre et al. (1989).  (b) (i) CaO vs FeO and (ii) K2O vs TiO2 biplot comparisons. 755 

NGRIP data from Davies et al. (2008), JM11-19PC data from Griggs et al. (2014) and 756 

VZ 1x and VZ 1 data from Lackschewitz and Wallrabe-Adams (1997). All plots on a 757 

normalised anhydrous basis. 758 

 759 
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Figure 4: Compositional characterisation of MD04-2820CQ glass shard deposits 760 

between 340-380 cm depth, comparisons to proximal Icelandic deposits and 761 

comparisons with horizons with a Kverkfjöll volcanic source in the Greenland tephra 762 

framework. (a) (i) inset of total alkalis versus silica plot. Division line to separate 763 

alkaline and sub-alkaline material from MacDonald and Katsura (1964). Chemical 764 

classification and nomenclature after Le Maitre et al. (1989).  (ii and iii) 765 

Compositional variation diagrams comparing analyses to deposits proximal to four 766 

tholeiitic Icelandic volcanic systems. Compositional fields defined using glass and 767 

whole rock analyses from Jakobsson et al. (2008) (Reykjanes), Höskuldsson et al. 768 

(2006) and Óladóttir et al. (2011) (Kverkfjöll) and Jakobsson (1979), Haflidason et al. 769 

(2000) and Óladóttir et al. (2011) (Grímsvötn and Veidivötn-Bardabunga). (b) (i) 770 

Compositional variation diagram of glass between 340-380 cm depth in MD04-771 

2820CQ (ii) Compositional variation diagram of glass from ice-core horizons from 772 

the framework of Bourne et al. (2015b). (c) Compositional variation diagram of glass 773 

from MD04-2820CQ 342-343 cm and glass from three heterogeneous Kverkfjöll 774 

eruptives identifed between GI-5.2 and GS-4 in the Greenland tephra framework of 775 

Bourne et al. (2015b). Ice-core horizons in bold are identified in multiple cores. All 776 

plots on a normalised anhydrous basis. 777 

 778 

Figure 5: Compositional characterisation of glass from MD04-2820CQ tephra 779 

deposits between 455-475 cm depth and comparison to the glass characterised for 780 

FMAZ III. (a) inset of total alkali vs. silica plot. Division line to separate alkaline and 781 

sub-alkaline material from MacDonald and Katsura (1964). Chemical classification 782 

and nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams 783 
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for tholeiitic glass. FMAZ III data from JM11-19PC core outlined in Griggs et al. 784 

(2014). All plots on a normalised anhydrous basis. 785 

 786 

Figure 6: (a) High-resolution stratigraphy of the 450-550 cm interval within MD04-787 

2820CQ. (i) Stratigraphy of colourless glass shard concentrations. (ii) Stratigraphy of 788 

brown glass shard concentrations. Red bars denote samples from which shards were 789 

extracted for compositional analysis. (iii) High-resolution percentage abundance of 790 

Neogloboquadrina pachyderma (sinistral). (iv) XRF (ITRAX core scanning) Ca count 791 

rates. (v) High-resolution IRD counts. Light green bars highlight glass shard peaks 792 

with homogenous compositions. (b) Greenland tephra framework between GI-8 and 793 

GI-12 (Bourne et al., 2015b and references within) plotted on the NGRIP oxygen 794 

isotope stratigraphy (NGRIP Members, 2004). Green lines denote horizons that can be 795 

traced in multiple cores. Other horizons are only present in NGRIP (red), NEEM 796 

(purple), GRIP (yellow) and DYE-3 (blue). 797 

 798 

Figure 7: (a) Compositional comparisons of tholeiitic glass from MD04-2820CQ 799 

Period 3 deposits and GI-8c and GS-9 tephras in the Greenland tephra framework of 800 

Bourne et al. (2013, 2015b). (b) Compositional comparisons of transitional alkali 801 

glass from MD04-2820CQ Period 3 deposits and GS-9 tephras in the Greenland 802 

tephra framework. Ice-core data from Bourne et al. (2015b). Ice-core horizons in bold 803 

can be traced in multiple cores and only data from the NGRIP occurrence have been 804 

used for those horizons. All plots on a normalised anhydrous basis. The key for 805 

analyses from MD04-2820CQ is the same as Figure 5. 806 

 807 
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Figure 8: (a) Inset of total alkali vs. silica plot focusing on rhyolitic material from the 808 

MD04-2820CQ core. Normalised compositional fields for the Icelandic rock suites 809 

derived from whole rock analyses in Jakobsson et al. (2008). Chemical classification 810 

and nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams 811 

comparing low SiO2 rhyolitic glass from MD04-2820CQ to geochemical fields for a 812 

number of Katla-derived tephra horizons. Glass compositions from Lane et al. (2012) 813 

(Vedde Ash and Dimna Ash), Matthews et al. (2011) (AF555; Abernethy Tephra 814 

(MacLeod et al., 2015)) and Pilcher et al. (2005) (Suduroy). (c) Compositional 815 

variation diagrams comparing high SiO2 rhyolitic glass from MD04-2820CQ to fields 816 

for marine and ice occurrences of the NAAZ II rhyolitic component. Glass data from 817 

Austin et al. (2004) (MD95-2006), Wastegård et al. (2006) (ENAM93-20, ENAM33, 818 

EW9302-2JPC), Brendryen et al. (2011) (SO82-05, MD99-2289) and Grönvold et al. 819 

(1995). All plots on a normalised anhydrous basis. 820 

 821 

Figure 9: Compositional characterisation of basaltic glass from deposits between 485 822 

and 530 cm in MD04-2820CQ and comparisons with Icelandic proximal material. (a) 823 

inset of inset of total alkali vs. silica plot. Division line to separate alkaline and sub-824 

alkaline material from MacDonald and Katsura (1964). Chemical classification and 825 

nomenclature after Le Maitre et al. (1989). (b) Compositional variation diagrams 826 

comparing analyses with material proximal to four tholeiitic Icelandic volcanic 827 

systems. Compositional fields defined using glass and whole rock analyses from 828 

Jakobsson et al. (2008) (Reykjanes), Höskuldsson et al. (2006) and Óladóttir et al. 829 

(2011) (Kverkfjöll) and Jakobsson (1979), Haflidason et al. (2000) and Óladóttir et al. 830 

(2011) (Grímsvötn and Veidivötn-Bardabunga). All plots on a normalised anhydrous 831 

basis. 832 
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 833 

Figure 10: (a) Comparison of the main tholeiitic glass population of MD04-2820CQ 834 

487-488 cm with glass compositional fields for GS-9 tephra horizons sourced from 835 

Grímsvötn in the Greenland tephra framework of Bourne et al. (2015b). Horizons in 836 

bold have been identified in multiple ice-cores. (b) Comparison of MD04-2820CQ 837 

524-525 cm glass with characterisations of glass from tephra horizons in the 838 

Greenland tephra framework of Bourne et al. (2015b). (c) Comparison of trace 839 

element characterisations of individual shards from MD04-2820CQ 524-525 cm and 840 

NGRIP 2162.05 m. All plots on a normalised anhydrous basis. 841 

 842 

Table 1: Statistical comparisons of the main tholeiitic population of glass from 843 

MD04-2820CQ 524-525 cm with glass from GI-11 and GS-12 tephra horizons within 844 

the Greenland tephra framework. Some outliers were removed from the ice-core 845 

characterisations. Critical value of 23.21 for statistical distance comparisons (10 846 

degrees of freedom; 99 % confidence interval). 847 

 848 

Table 2: Summary of tephra horizons in MD04-2820CQ with the potential to act as 849 

widespread tie-lines to other palaeoclimatic sequences in the North Atlantic region. 850 

The timing of events is based on the stratigraphy for the MD04-2820CQ record. 851 

*Only to be used as a marine-marine tie-point. 852 

  853 
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Table 1: 

Ice core horizon D2 SC 

NGRIP 2150.90 m 10.042 0.959 
NGRIP 2162.05 m 1.740 0.977 
NGRIP 2162.60 m 8.349 0.959 
NGRIP 2163.35 m 9.709 0.953 
NGRIP 2164.10 m 8.239 0.952 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 2: 
 

Depth Interval Timing Composition Potential Source Correlations 

456-473 cm DO-8 warming 
Heterogenous 

Tholeiitic Basaltic 
Grímsvötn, Iceland FMAZ III* 

487-488 cm 
Between DO-10 

and DO-9 
Tholeiitic Basaltic Grímsvötn, Iceland New horizon 

497-498 cm DO-11  
Transitional alkali 

Rhyolitic 
Katla, Iceland New horizon 

524-525 cm DO-11 warming Tholeiitic Basaltic Grímsvötn, Iceland New horizon 

610-611 cm DO-15 cooling 
Transitional alkali 

Rhyolitic 
Tindfjallajökull, Iceland NAAZ II 
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