47 research outputs found

    An Investigation of the Kinetics and Equilibrium Chemistry of Cold-Brew Coffee: Caffeine and Chlorogenic Acid Concentrations as a Function of Roasting Temperature and Grind Size

    Get PDF
    Abstract: Recently, both small and large commercial coffee brewers have begun offering cold-brew coffee drinks to customers with the claims that these cold-water extracts contain fewer bitter acids due to brewing conditions (Toddy website, 2016) while still retaining the flavor profile. Dunkin Donuts’ website suggests that the cold-water and long brewing times allow the coffee to reach “... its purest form.” With very little research existent on the chemistry of cold brew coffee consumers are left to the marketing strategies of Starbucks and other companies regarding the contents of cold-brew coffee. This research analyzes the caffeine and chlorogenic acid (3-CGA) content of cold-brew coffee as a function of brewing time, grind size, and roasting temperature of coffee beans sourced from the Kona region of Hawaii using high pressure liquid chromatography (HPLC). Coarse and medium grinds of both dark and medium roasts were analyzed by mixing 350mL of filtered water with 35g of coffee grinds under constant stirring at 20°C. Sampling was performed every 15 minutes for the first hour, then every 30 minutes for the next ten to twelve hours, with a final sample being drawn at 24hours. Equilibrium concentrations for both 3-CGA and caffeine were reached following 600 minutes. The caffeine concentrations ranged from 935mg/L to 1475mg/L. Variation was seen as a function of roasting temperature, and less so grind size. The 3-CGA concentrations were found to range from 345mg/L to 547mg/L. In both cases, the medium roast coarse grind coffee produced the highest concentrations of caffeine and 3-CGA while dark roast coarse grind produced the lowest concentrations of caffeine and 3-CGA. Hot brew experiments agreed well with caffeine and 3-CGA extraction concentrations in both dark roast coffees, showing very similar final concentrations. The medium roast coffees showed deviation from the hot brew coffees with respect to caffeine, indicating the need for additional experimentation to determine the role of water temperature in the availability of caffeine during extraction

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Life-history correlates of the evolution of live bearing in fishes.

    No full text
    Selection for live bearing is thought to occur when the benefits of increasing offspring survival exceed the costs of reduced fecundity, mobility and the increased metabolic demands of carrying offspring throughout development. We present evidence that live bearing has evolved from egg laying 12 times in teleost (bony) fishes, bringing the total number of transitions to 21 to 22 times in all fishes, including elasmobranchs (sharks and rays). Live bearers produce larger offspring than egg layers in all of 13 independent comparisons for which data were available. However, contrary to our expectation there has not been a consistent reduction in fecundity; live bearers have fewer offspring in seven out of the 11 available comparisons. It was predicted that live bearers would have a larger body size, as this facilitates accommodation of developing offspring. This prediction was upheld in 14 out of 20 comparisons. However, this trend was driven by elasmobranchs, with large live bearers in seven out of eight comparisons. Thus, while the evolution of live bearing in elasmobranchs is correlated with predicted increases in offspring size and adult size, teleost live bearers do not have such a consistent suite of life-history correlates. This suggests that constraints or selection pressures on associated life histories may differ in live-bearing elasmobranchs and teleost fishes

    Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma

    No full text
    Mucolipidosis type III (MLIII) is an autosomal recessive disorder affecting lysosomal hydrolase trafficking. In a study of 10 patients from seven families with a clinical phenotype and enzymatic diagnosis of MLIII, six novel GNPTG gene mutations were identified. These included missense (p.T286M) and nonsense (p.W111X) mutations and a transition in the obligate AG-dinucleotide of the intron 8 acceptor splice site (c.610–2A>G). Three microdeletions were also identified, two of which (c.611delG and c.640_667del28) were located within the coding region whereas one (c.609+28_610-16del) was located entirely within intron 8. RT-PCR analysis of the c.610–2A>G transition demonstrated that the change altered splicing, leading to the production of two distinct aberrantly spliced forms, viz. the skipping of exon 9 (p.G204_K247del) or the retention of introns 8 and 9 (p.G204VfsX28). RT-PCR analysis, performed on a patient homozygous for the intronic deletion (c.609+28_610-16del), failed to detect any GNPTG RNA transcripts. To determine whether c.609+28_610-16del allele-derived transcripts were subject to nonsense-mediated mRNA decay (NMD), patient fibroblasts were incubated with the protein synthesis inhibitor anisomycin. An RT-PCR fragment retaining 43 bp of intron 8 was consistently detected suggesting that the 33-bp genomic deletion had elicited NMD. Quantitative real-time PCR and GNPTG western blot analysis confirmed that the homozygous microdeletion p.G204VfsX17 had elicited NMD resulting in failure to synthesize GNPTG protein. Analysis of the sequences surrounding the microdeletion breakpoints revealed either intrinsic repetitivity of the deleted region or short direct repeats adjacent to the breakpoint junctions. This is consistent with these repeats having mediated the microdeletions via replication slippage and supports the view that the mutational spectrum of the GNPTG gene is strongly influenced by the properties of the local DNA sequence environment

    The Walking Dead: The Anthropocene as a Ruined Earth

    Get PDF
    Much has been made of the claim that humanity has ascended to the status of a terrestrial force and inaugurated a new geological epoch, the Anthropocene. While attention has been paid to the contestable nature of the epoch and its disputed histories, insufficient attention has been paid to the significance of the Anthropocene for political praxis. Contrary to much Anthropocenic discourse that articulates a renewed sense of mastery over nature through assertions of humanity’s complete subsumption of the environment, recent work in both science and technology studies and human geography suggests an alternate reading of the Anthropocene as an epoch without mastery, one where humanity exists in a permanent state of vulnerability. The political significance of this state of vulnerability is explored through a reading of popular TV show The Walking Dead, a post-collapse narrative of a world in ruins and overrun by zombies. On a ruined earth, political praxis is orientated not towards a return of the earth to its previous productive state, but rather as an unending labour of survival and salvage. Survival is not a life reduced to bare life, but rather a state of tension between a life reduced to necessity, and the refusal to separate the question of how to live from the work of securing life itself. Left unresolved, this tension animates the politics of the Anthropocene, suggesting that in place of the teleology of progress social life is organised within it through unceasing care and repair time
    corecore